×

zbMATH — the first resource for mathematics

Smooth homology spheres and their fundamental groups. (English) Zbl 0187.20401

Keywords:
topology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Morris W. Hirsch, Obstruction theories for smoothing manifolds and maps, Bull. Amer. Math. Soc. 69 (1963), 352 – 356. · Zbl 0112.14602
[2] Heinz Hopf, Fundamentalgruppe und zweite Bettische Gruppe, Comment. Math. Helv. 14 (1942), 257 – 309 (German). · Zbl 0027.09503 · doi:10.1007/BF02565622 · doi.org
[3] Wu-chung Hsiang and Wu-yi Hsiang, Differentiable actions of compact connected classical groups. I, Yale University Notes, 1966. · Zbl 0184.27204
[4] Michel A. Kervaire, On the Pontryagin classes of certain \?\?(\?)-bundles over manifolds, Amer. J. Math. 80 (1958), 632 – 638. · Zbl 0097.38804 · doi:10.2307/2372775 · doi.org
[5] Michel A. Kervaire, Les nœuds de dimensions supérieures, Bull. Soc. Math. France 93 (1965), 225 – 271 (French). · Zbl 0141.21201
[6] Michel A. Kervaire and John W. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504 – 537. · Zbl 0115.40505 · doi:10.2307/1970128 · doi.org
[7] John Milnor, Groups which act on \?\(^{n}\) without fixed points, Amer. J. Math. 79 (1957), 623 – 630. · Zbl 0078.16304 · doi:10.2307/2372566 · doi.org
[8] Michio Suzuki, On finite groups with cyclic Sylow subgroups for all odd primes, Amer. J. Math. 77 (1955), 657 – 691. · Zbl 0068.25601 · doi:10.2307/2372591 · doi.org
[9] K. Varadarajan, Groups for which Moore spaces \?(\?,1) exist, Ann. of Math. (2) 84 (1966), 368 – 371. · Zbl 0149.20103 · doi:10.2307/1970450 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.