×

zbMATH — the first resource for mathematics

Currents and area. (English) Zbl 0187.31302

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Lamberto Cesari, Surface area, Annals of Mathematics Studies, no. 35, Princeton University Press, Princeton, N. J., 1956. · Zbl 0683.53003
[2] Maurice R. Demers and Herbert Federer, On Lebesgue area. II, Trans. Amer. Math. Soc. 90 (1959), 499 – 522. · Zbl 0086.04801
[3] deRham DR. Variétés différentiables, Actualités Sci. Ind. no. 1222, Paris, Hermann et Cie, 1955.
[4] Eilenberg E. On \( \phi \) measures, Ann. Soc. Polon. Math. vol. 17 (1938) pp. 252-253.
[5] Herbert Federer, Surface area. I, Trans. Amer. Math. Soc. 55 (1944), 420 – 437. · Zbl 0060.14003
[6] Herbert Federer, Coincidence functions and their integrals, Trans. Amer. Math. Soc. 59 (1946), 441 – 466. · Zbl 0060.14101
[7] Herbert Federer, The (\?,\?) rectifiable subsets of \?-space, Trans. Amer. Soc. 62 (1947), 114 – 192. · Zbl 0032.14902
[8] Herbert Federer, Essential multiplicity and Lebesgue area, Proc. Nat. Acad. Sci. U. S. A. 34 (1948), 611 – 616. · Zbl 0032.14903
[9] Herbert Federer, Hausdorff measure and Lebesgue area, Proc. Nat. Acad. Sci. U. S. A. 37 (1951), 90 – 94. · Zbl 0042.28402
[10] Herbert Federer, Measure and area, Bull. Amer. Math. Soc. 58 (1952), 306 – 378. · Zbl 0046.28402
[11] Herbert Federer, Some integralgeometric theorems, Trans. Amer. Math. Soc. 77 (1954), 238 – 261. · Zbl 0058.16405
[12] Herbert Federer, On Lebesgue area, Ann. of Math. (2) 61 (1955), 289 – 353. · Zbl 0065.04002 · doi:10.2307/1969917 · doi.org
[13] Herbert Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418 – 491. · Zbl 0089.38402
[14] Hebert Federer, The area of a nonparametric surface, Proc. Amer. Math. Soc. 11 (1960), 436 – 439. · Zbl 0095.04601
[15] Herbert Federer and Wendell H. Fleming, Normal and integral currents, Ann. of Math. (2) 72 (1960), 458 – 520. · Zbl 0187.31301 · doi:10.2307/1970227 · doi.org
[16] Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, v. 4, Princeton University Press, Princeton, N. J., 1941. · Zbl 0060.39808
[17] Charles B. Morrey Jr., An Analytic Characterization of Surfaces of Finite Lebesgue Area. Part I, Amer. J. Math. 57 (1935), no. 3, 692 – 702. · Zbl 0012.20404 · doi:10.2307/2371197 · doi.org
[18] Radó R. Length and area, Amer. Math. Soc. Colloquium Publications, vol. 30, 1948.
[19] Paul Slepian, Theory of Lebesgue area of continuous maps of 2-manifolds into \?-space, Ann. of Math. (2) 68 (1958), 669 – 689. · Zbl 0083.28203 · doi:10.2307/1970161 · doi.org
[20] Paul Slepian, On the Lebesgue area of a doubled map, Pacific J. Math. 8 (1958), 613 – 620. · Zbl 0084.05201
[21] Hassler Whitney, Geometric integration theory, Princeton University Press, Princeton, N. J., 1957. · Zbl 0083.28204
[22] Laurent Chisholm Young, Surfaces paramétriques généralisées, Bull. Soc. Math. France 79 (1951), 59 – 84 (French). · Zbl 0044.10203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.