×

Brownian local times and taboo processes. (English) Zbl 0187.41203


MSC:

60J65 Brownian motion
Full Text: DOI

References:

[1] Kai Lai Chung, Markov chains with stationary transition probabilities, Die Grundlehren der mathematischen Wissenschaften, Bd. 104, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960. · Zbl 0092.34304
[2] William Feller, An introduction to probability theory and its applications. Vol. I, John Wiley and Sons, Inc., New York; Chapman and Hall, Ltd., London, 1957. 2nd ed. · Zbl 0077.12201
[3] K. Ito and H. P. McKean, Jr., Diffusion processes and their sample paths, Springer, Berlin, 1965. · Zbl 0127.09503
[4] F. B. Knight, Random walks and a sojourn density process of Brownian motion, Trans. Amer. Math. Soc. 109 (1963), 56 – 86. · Zbl 0119.14604
[5] P. Lévy, Processus stochastiques et mouvement brownien, Gauthier-Villars, Paris, 1948. · Zbl 0034.22603
[6] Daniel Ray, Sojourn times of diffusion processes, Illinois J. Math. 7 (1963), 615 – 630. · Zbl 0118.13403
[7] G. E. Roberts and H. Kaufman, Table of Laplace transforms, W. B. Saunders Co., Philadelphia-London, 1966. · Zbl 0137.08901
[8] Charles Stone, Limit theorems for random walks, birth and death processes, and diffusion processes, Illinois J. Math. 7 (1963), 638 – 660. · Zbl 0118.13202
[9] H. F. Trotter, A property of Brownian motion paths, Illinois J. Math. 2 (1958), 425 – 433. · Zbl 0117.35502
[10] M. L. Silverstein, A new approach to local times, J. Math. Mech. 17 (1967/1968), 1023 – 1054. · Zbl 0184.41101
[11] H. P. McKean Jr., Excursions of a non-singular diffusion, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 1 (1962/1963), 230 – 239. · Zbl 0117.35903 · doi:10.1007/BF00532494
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.