×

To reverse a Markov process. (English) Zbl 0187.41302


MSC:

60J25 Continuous-time Markov processes on general state spaces
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Blackwell, D., On a class of probability spaces.Proceedings of the Third Berkeley Sumposium on Math. Stat. and Prob., Vol. 2, pp. 1–6. University of California Press, 1956. · Zbl 0073.12301
[2] Blumenthal, R. M. & Getoor, R. K.,Markov Processes and Potential Theory. Academic Press, 1968. · Zbl 0169.49204
[3] Cartier, P., Meyer, P. A. & Well, M. Le retournement du temps: compléments à l’exposé de M. Weil.Séminaire de Probabilités II, Université de Strasbourg, pp. 22–33. Springer-Verlag, 1967.
[4] Chung, K. L., On the Martin boundary for Markov chains.Proc. Nat. Acad. Sci., 48 (1962) 963–968. · Zbl 0228.60030
[5] Chung, K. L.,Markov Chains with Stationary Transition Probabilities. 2nd ed. Springer-Verlag, 1967. · Zbl 0146.38401
[6] Doob, J. L.,Stochastic Processes. Wiley & Sons, 1953.
[7] Hunt, G. A., Markoff processes and potentials III,Ill. J. Math. 2 (1958), 151–213.
[8] –, Markoff chains and Martin boundaries.Ill. J. Math., 4 (1960), 313–340. · Zbl 0094.32103
[9] Hunt, G. A.,Martingales et Processus de Markov. Dunod, 1966. · Zbl 0158.35802
[10] Ikeda, N., Nagasawa, M. &Sato, K., A time reversion of Markov processes and killing.Kodai Math. Sem. Rep., 16 (1964), 88–97. · Zbl 0133.10801
[11] Kunita, H. &Watanabe, T., On certain reversed processes and their applications to potential theory and boundary theory.J. Math. Mech., 15 (1966), 393–434. · Zbl 0192.25102
[12] Meyer, P. A.,Probabilités et potentiel. Hermann, 1966.
[13] Meyer, P. A., Guide détaillé de la théorie ”générale” des processus.Séminarie de Probabilités II, Université de Strasbourg, pp. 140–165. Springer-Verlag, 1968.
[14] Meyer, P. A., Processus de Markov: la frontière de Martin.Séminaire de Probabilités III, Université de Strasbourg. Springer-Verlag, 1968.
[15] Nagasawa, M., Time reversions of Markov processes.Nagoya Math. J., 24 (1964), 177–204. · Zbl 0133.10702
[16] Nelson, E., The adjoint Markov process.Duke Math. J., 25 (1958), 671–690. · Zbl 0084.13402
[17] Weil, M., Retournement du temps dans les processus Markoviens. Résolventes en, dualité.Séminaire de Probabilités I, Université de Strasbourg, pp. 166–189. Springer-Verlag, 1967.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.