×

zbMATH — the first resource for mathematics

Projectives and injectives in the category of complete lattices with residuated mappings. (English) Zbl 0188.04701

PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Balbes, R.: Projective and injective distributive lattices. Pacific J. Math.21, 405-420 (1967). · Zbl 0157.34301
[2] Banaschewski, B., Bruns, G.: Categorical characterization of the MacNeille completion. Arch. Math.18, 369-377 (1967). · Zbl 0157.34101 · doi:10.1007/BF01898828
[3] Croisot, R.: Applications residuées. Paris École Normale Superieure, Annales Scientifiques73, 453-474 (1956). · Zbl 0073.01103
[4] Derderian, J.: Residuated mappings. Pacific J. Math.20, 35-44 (1967). · Zbl 0145.01602
[5] Dubreil, P., Croisot, R.: Proprietes generales de la residuation en liaison avec les correspondances de Galois. Collect. Math.7, 514-525 (1954). · Zbl 0059.02502
[6] Janowitz, M. F.: A semigroup approach to lattices. Canad. J. Math.18, 1212-1223 (1966). · Zbl 0154.01003 · doi:10.4153/CJM-1966-119-5
[7] Mitchell, B.: Theory of catcgories. New York and London: Academic Press 1965.
[8] Pickert, G.: Closure operators and Galois theory in lattices. Trans. Amer. Math. Soc.55, 514-525 (1944). · Zbl 0060.06205
[9] Raney, G. N.: A subdirect union representation for completely distributive complete lattices. Proc. Amer. Math. Soc.4, 518-522 (1953). · Zbl 0053.35201 · doi:10.1090/S0002-9939-1953-0058568-4
[10] ?? Completely distributive complete lattices. Proc. Amer. Math. Soc.3, 677-680 (1952). · Zbl 0049.30304 · doi:10.1090/S0002-9939-1952-0052392-3
[11] Szasz, G.: Introduction to lattice theory. New York-London: Academic Press, 1963 (Third edition). · Zbl 0126.03703
[12] Wyler, O.: Weakly exact categories. UNM Technical Report No. 68, 1964. · Zbl 0163.01503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.