DePree, J. D.; Higgins, J. A. Collectively compact sets of linear operators. (English) Zbl 0188.19602 Math. Z. 115, 366-370 (1970). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 Documents Keywords:functional analysis PDF BibTeX XML Cite \textit{J. D. DePree} and \textit{J. A. Higgins}, Math. Z. 115, 366--370 (1970; Zbl 0188.19602) Full Text: DOI EuDML References: [1] Anselone, P. M., Moore, R. H.: Approximate solutions of integral and operator equations. J. Math. Analysis Appl.9, 268-277 (1964). · Zbl 0149.11502 · doi:10.1016/0022-247X(64)90042-3 [2] ?, Palmer, T. W.: Coflectively compact sets of linear operators. Pacific J. Math.25, 417-422 (1968). · Zbl 0157.45202 [3] ?: Spectral analysis of collectively compact, strongly convergent operator sequences. Pacific J. Math.25, 423-431 (1968). · Zbl 0157.45203 [4] Kelly, J. L., Namioka, I.: Linear topological spaces. Princeton: Van Nostrand 1963. [5] Schaefer, H. H.: Topological vector spaces. New York: MacMillan 1966. · Zbl 0141.30503 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.