Semi-groupes de mesures complexes et calcul symbolique sur les générateurs infinitesimaux de semi-groupes d’opérateurs. (French) Zbl 0188.19902

Full Text: DOI Numdam EuDML


[1] S. BOCHNER, Harmonic analysis and the theory of probability, University of California Press, Berkeley and Los Angeles. · Zbl 0068.11702
[2] C. HERZ, Spectral theory of bounded functions, Trans. Amer. Math. Soc., 94, p. 181, (1960). et aussi Processus stochastiques et laplaciens généralisés, Séminaire Brelot-Choquet-Deny (Théorie du Potentiel), 9ème année, 1964-1965. · Zbl 0090.33202
[3] E. HILLE, R.S. PHILLIPS, Functional analysis and semi-groups, Colloq. Publ. Amer. Math. Soc., (1957). · Zbl 0078.10004
[4] G. LUMER, R.S. PHILLIPS, Dissipative operators in a Banach space, Pacific Journal of Mathematics, 11, 679-698, (1961). · Zbl 0101.09503
[5] P.A. MEYER, Probabilités et potentiels, Hermann, Paris, (1966). · Zbl 0138.10402
[6] W. RUDIN, Fourier analysis on groups, Interscience Publishers, (1962). · Zbl 0107.09603
[7] L. SCHWARTZ, Théorie des distributions, Hermann, Paris, (1966).
[8] L. SCHWARTZ, Lectures on mixed problems in partial differential equations and representation of semi-groups, Tata Institute, Bombay, (1958).
[9] K. YOSIDA, Functional analysis, Springer, (1966).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.