×

zbMATH — the first resource for mathematics

On the projective tensor product of vector-valued measures. II. (English) Zbl 0188.20602

PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] Berberian S. K.: Measure and integration. New York 1965. · Zbl 0126.08001
[2] Day M. M.: Normed linear spaces. Berlin 1958. · Zbl 0082.10603
[3] Duchon M., Kluvánek I.: Inductive tensor product of vector-valued measures. Mat. časop. 17 (1967), 108-112. · Zbl 0162.19101
[4] Duchoň M.: On the projective tensor product of vector-valued measures. Mat. časop. 17 (1967), 113-120. · Zbl 0162.19102
[5] Dunford N., Schwartz J. T.: Linear operators I. New York 1958. · Zbl 0084.10402
[6] Bartle R. G., Dunford N., Schwartz J.: Weak compactness and vector measures. Canad. J. Math. 7 (1955), 289-305. · Zbl 0068.09301
[7] Gould G. G.: Integration over vector-valued measures. Proc. London Math. Soc. 15 (1965), 193-225. · Zbl 0138.38403
[8] Grothendieck A.: Produits tensoriels topologiques et espaces nucléaires. Mem. Amer. Math. Soc. 16 (1955), 171 p. and 140 p. · Zbl 0123.30301
[9] Клуванєк И.: К мєоруу вєкморных мєр. Mat.-fuz. časop. 11 (1961), 173-191.
[10] Kluvánek I.: An example concerning the projective tensor product of vector measures. Mat. časop. 19 (1969), to appear.
[11] Marinescu G.: Espaces vectoriels pseudotopologiques et théorie des distributions. Berlin 1965. · Zbl 0124.31602
[12] Pietsch A.: Nukleare lokalkonvexe Räume. Berlin 1965. · Zbl 0152.32302
[13] Schaefer H. H.: Topological vector spaces. New York 1966. · Zbl 0141.30503
[14] Arsene G., Stratila S.: Prolongement des mesures vectorielles. Revue Roumaine Math. 10 (1965), 333-338. · Zbl 0138.38404
[15] Dinculeanu N., Kluvánek I.: On vector measures. Proc. London Math. Soc. 17 (1967), 505-512. · Zbl 0195.34002
[16] Dinculeanu N.: Vector measures. Berlin 1966. · Zbl 0142.10502
[17] Halmos P. R.: Measure theory. New York 1962.
[18] Bartle R. G.: A general bilinear vector integral. Studia Math. 15 (1956), 337 - 352. · Zbl 0070.28102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.