×

A lifting theorem for Boolean \(\sigma\)-algebras. (English) Zbl 0188.45402


PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Halmos, P. R.: Lectures on Boolean algebras. Princeton: van Nostrand 1963. · Zbl 0114.01603
[2] Maharam, D.: On a theorem of von Neumann. Proc. Amer. Math. Soc.9, 937-994 (1958). · Zbl 0102.04103
[3] Neumann, J. von: Algebraische Repräsentanten der Funktionen bis auf eine Menge von Masse Null. J. Reine Angew. Math.165, 109-115 (1931). · JFM 57.0294.02
[4] ? Stone, M. H.: The determination of representative elements in the residual classes of a Boolean algebra. Fundamenta Math.25, 353-378 (1935). · Zbl 0012.24403
[5] Phelps, R. R.: Extreme positive operators and homomorphisms. Trans. Amer. Math. Soc.108, 353-378 (1963). · Zbl 0119.10702
[6] Stone, M. H.: Boundedness properties in function lattices. Canadian J. Math.1, 176-186 (1949). · Zbl 0032.16901
[7] Tulcea, A. Ionescu, Tulcea, C. Ionescu: On the lifting theorem 1. J. Math. Analysis Appl.3, 537-546 (1961). · Zbl 0122.11604
[8] Wright, J. D. Maitland: Stone algebra valued measures and integrals. Proc. London Math. Soc.19, 107-122 (1969). · Zbl 0186.46504
[9] ?: A Radon-Nikodym theorem for Stone algebra valued measures. Trans. Amer. Math. Soc.139, 75-94 (1969). · Zbl 0182.46902
[10] ?: Applications to averaging operators of the theory of Stone algebra valued modular measures. Quart. J. Math., Oxford19, 321-331 (1968). · Zbl 0159.42103
[11] ?: Martingale convergence theorems for sequences of Stone algebras. Proc. Glasgow Math. Assoc.10, 77-83 (1969). · Zbl 0179.18202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.