×

zbMATH — the first resource for mathematics

Analytic and entire vectors for representations of Lie groups. (English) Zbl 0189.14102

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Lipman Bers, Fritz John, and Martin Schechter, Partial differential equations, Lectures in Applied Mathematics, Vol. III, Interscience Publishers John Wiley & Sons, Inc. New York-London-Sydney, 1964. · Zbl 0126.00207
[2] Robert J. Blattner, On induced representations, Amer. J. Math. 83 (1961), 79 – 98. · Zbl 0122.28405 · doi:10.2307/2372722 · doi.org
[3] Felix E. Browder, Real analytic functions on product spaces and separate analyticity., Canad. J. Math. 13 (1961), 650 – 656. · Zbl 0118.07603 · doi:10.4153/CJM-1961-054-1 · doi.org
[4] François Bruhat, Sur les représentations induites des groupes de Lie, Bull. Soc. Math. France 84 (1956), 97 – 205 (French). · Zbl 0074.10303
[5] P. Cartier, Représentations des groupes de Lie, Séminaire Bourbaki #96 (1954); reprint, Benjamin, New York, 1967.
[6] Nelson Dunford and Jacob T. Schwartz, Linear operators. Part II: Spectral theory. Self adjoint operators in Hilbert space, With the assistance of William G. Bade and Robert G. Bartle, Interscience Publishers John Wiley & Sons New York-London, 1963. · Zbl 0128.34803
[7] Roger Godement, A theory of spherical functions. I, Trans. Amer. Math. Soc. 73 (1952), 496 – 556. · Zbl 0049.20103
[8] I. Gelfand and M. Neumark, Unitary representations of the group of linear transformations of the straight line, C. R. (Doklady) Acad. Sci URSS (N.S.) 55 (1947), 567 – 570. · Zbl 0029.00503
[9] Roe Goodman, Analytic domination by fractional powers of a positive operator, J. Functional Analysis 3 (1969), 246 – 264. · Zbl 0172.40605
[10] SigurÄ’ur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962.
[11] Einar Hille, Contributions to the theory of Hermitian series. II. The representation problem, Trans. Amer. Math. Soc. 47 (1940), 80 – 94. · Zbl 0022.36502
[12] G. Hochschild, The structure of Lie groups, Holden-Day, Inc., San Francisco-London-Amsterdam, 1965. · Zbl 0131.02702
[13] Yitzhak Katznelson, An introduction to harmonic analysis, John Wiley & Sons, Inc., New York-London-Sydney, 1968. · Zbl 0169.17902
[14] Irving E. Segal and Ray A. Kunze, Integrals and operators, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1968. · Zbl 0373.28001
[15] N. N. Lebedev, Sur une formule d’inversion, Dokl. Akad. Nauk SSSR 52 (1946), 655-658. · Zbl 0063.03462
[16] George W. Mackey, Induced representations of locally compact groups. I, Ann. of Math. (2) 55 (1952), 101 – 139. · Zbl 0046.11601 · doi:10.2307/1969423 · doi.org
[17] Wilhelm Magnus, Fritz Oberhettinger, and Raj Pal Soni, Formulas and theorems for the special functions of mathematical physics, Third enlarged edition. Die Grundlehren der mathematischen Wissenschaften, Band 52, Springer-Verlag New York, Inc., New York, 1966. · Zbl 0039.07202
[18] Robert T. Moore, Measurable, continuous and smooth vectors for semi-groups and group representations, Memoirs of the American Mathematical Society, No. 78, American Mathematical Society, Providence, R.I., 1968.
[19] M. A. Naimark, Linear representations of the Lorentz group, Translated by Ann Swinfen and O. J. Marstrand; translation edited by H. K. Farahat. A Pergamon Press Book, The Macmillan Co., New York, 1964. · Zbl 0137.31703
[20] Edward Nelson, Analytic vectors, Ann. of Math. (2) 70 (1959), 572 – 615. · Zbl 0091.10704 · doi:10.2307/1970331 · doi.org
[21] Edward Nelson and W. Forrest Stinespring, Representation of elliptic operators in an enveloping algebra, Amer. J. Math. 81 (1959), 547 – 560. · Zbl 0092.32103 · doi:10.2307/2372913 · doi.org
[22] Raymond E. A. C. Paley and Norbert Wiener, Fourier transforms in the complex domain, American Mathematical Society Colloquium Publications, vol. 19, American Mathematical Society, Providence, RI, 1987. Reprint of the 1934 original. · Zbl 0123.30104
[23] G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis. I, Springer, Berlin, 1954. · Zbl 0055.27802
[24] L. Pukánszky, Leçons sur les représentations des groupes, Monographies de la Société Mathématique de France, No. 2, Dunod, Paris, 1967 (French).
[25] I. E. Segal and John von Neumann, A theorem on unitary representations of semisimple Lie groups, Ann. of Math. (2) 52 (1950), 509 – 517. · Zbl 0045.30901 · doi:10.2307/1969429 · doi.org
[26] Thomas Sherman, A weight theory for unitary representations, Canad. J. Math. 18 (1966), 159 – 168. · Zbl 0136.11601 · doi:10.4153/CJM-1966-020-0 · doi.org
[27] I. M. Singer, Uniformly continuous representations of Lie groups, Ann. of Math. (2) 56 (1952), 242 – 247. · Zbl 0049.35802 · doi:10.2307/1969797 · doi.org
[28] Elias M. Stein, Analytic continuation of group representations, Yale University Press, New Haven, Conn.-London, 1971. A James K. Whittemore Lecture in Mathematics given at Yale University, 1967; Yale Mathematical Monographs, 2. · Zbl 0194.16201
[29] E. C. Titchmarsh, Eigenfunction expansions associated with second-order differential equations. Part I, Second Edition, Clarendon Press, Oxford, 1962. · Zbl 0099.05201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.