×

zbMATH — the first resource for mathematics

FINESSE: Axisymmetric MHD equilibria with flow. (English) Zbl 1021.76026
Summary: The FINESSE code (finite element solver for stationary equilibria) computes axisymmetric magnetohydrodynamic equilibria in poloidal elliptic flow regimes for a variety of astrophysical and laboratory plasma configurations. The obtained equilibria are accurate and are used to study the spectral characteristics of such flowing equilibria. The nonlinear partial differential equation for the poloidal magnetic flux is solved in a weak form via Picard iteration, resulting in a large-scale linear problem. The algebraic Bernoulli equation for the poloidal Alfvén Mach number is solved with a nonlinear root finder. Converged solutions are obtained by iterating on these two equations.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
76W05 Magnetohydrodynamics and electrohydrodynamics
85A30 Hydrodynamic and hydromagnetic problems in astronomy and astrophysics
Software:
FINESSE; CASTOR
PDF BibTeX Cite
Full Text: DOI
References:
[1] Beliën, A.J.C.; Poedts, S.; Goedbloed, J.P., Two-dimensional equilibrium in coronal magnetostatic flux tubes: an accurate equilibrium solver, Comput. phys. commun., 106, 21, (1997) · Zbl 0977.76526
[2] Beliën, A.J.C.; Goedbloed, J.P.; van der Holst, B., Axisymmetric plasma equilibria with flow: A new solver, Europhy. conf. abstr., 24B, 892, (2000)
[3] A. J. C. Beliën, M. A. Botchev, J. P. Goedbloed, B. van der Holst, and, R. Keppens, Influence of poloidal flow on TAE modes, in, Proceedings of 28th EPS conference on controlled fusion and plasma physics, June 18-22, 2001, Funchal Portugal, 2001, Paper P3.041. Europhys. Conf. Abstr. 25A p, 1077, 2001.
[4] Beliën, A.J.C.; Goedbloed, J.P.; van der Holst, B., MHD waves and instabilities in accretion discs, Proceedings of 28th EPS conference on controlled fusion and plasma physics, June 18-22, 2001, Funchal, Portugal, (2001)
[5] A. Bondeson, G. Vlad, and, H. Lütjens, Resistive toroidal stability of internal kink modes in circular and shaped tokamaks, Phys. Fluids, 7, 1889, 1992. Europhys. Conf. Abstr. 25A p, 1309, 2001.
[6] Goedbloed, J.P., Some remarks on computing axisymmetric equilibria, Comput. phys. commun., 31, 123, (1984)
[7] Goedbloed, J.P.; Lifschitz, A., Stationary symmetric magnetohydrodynamic flows, Phys. plasmas, 4, 3544, (1997)
[8] Goedbloed, J.P., Transonic magnetohydrodynamic flows in laboratory and astrophysical plasmas, Phys. scripta, T98, 43, (2002)
[9] J. P. Goedbloed, and, A. Lifschitz, submitted for publication.
[10] Hameiri, E., The equilibrium and stability of rotating plasmas, Phys. fluids, 26, 230, (1983) · Zbl 0537.76121
[11] van der Holst, B.; Beliën, A.J.C.; Goedbloed, J.P., Low frequency Alfvén waves induced by toroidal flows, Phys. plasmas, 7, 4208, (2000)
[12] Huysmans, G.T.A.; Goedbloed, J.P.; Kerner, W., Isoparametric bicubic Hermite elements for solution of the Grad-Shafranov equation, Proc. CP90 conf. on comp. phys. proc., 371, (1991)
[13] Huysmans, G.T.A.; Goedbloed, J.P.; Kerner, W., Free boundary resistive modes in tokamaks, Phys. fluids, 5, 1545, (1993)
[14] Keppens, R.; Goedbloed, J.P., Numerical simulations of stellar winds: polytropic models, Astron. astrophys., 343, 251, (1999)
[15] Kerner, W.; Goedbloed, J.P.; Huysmans, G.T.A.; Poedts, S.; Schwarz, E., CASTOR: normal-mode analysis of resistive MHD plasmas, J. comput. phys., 142, 271, (1998) · Zbl 0921.76100
[16] Lütjens, H.; Bondeson, A.; Roy, A., Axisymmetric MHD equilibrium solver with bicubic Hermite elements, Comput. phys. commun., 69, 287, (1992)
[17] Powell, K.G.; Roe, P.L.; Linde, T.J.; Gombosi, T.I.; De Zeeuw, D.L., A solution-adaptive upwind scheme for ideal magnetohydrodynamics, J. comput. phys., 154, 284, (1999) · Zbl 0952.76045
[18] Press, W.H.; Flannery, B.P.; Teukolsky, S.A.; Vettering, W.T., Numerical recipes, (1989)
[19] Strang, G.; Fix, G.J., an analysis of the finite element method, (1973), Prentice Hall Englewood Cliffs · Zbl 0278.65116
[20] Tóth, G.; Keppens, R.; Botchev, M.A., Implicit and semi-implicit schemes in the versatile advection code: numerical tests, Astron. astrophys., 332, 1159, (1998)
[21] Vlad, G.; Lütjens, H.; Bondeson, A., Free boundary toroidal stability of ideal and resistive internal kinks, Controlled fusion and plasma heating, proc. 18th European conf., 15C, 85, (1991)
[22] Żelazny, R.; Stankiewicz, R.; Galkowski, A.; Potempski, S., Solutions to the flow equilibrium problem in elliptic regions, Plasma phys. control. fusion, 35, 1215, (1993)
[23] Zehrfeld, H.P.; Green, B.J., Stationary toroidal equilibria at finite beta, Nucl. fusion, 12, 569, (1972)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.