×

Formal logics of discovery and hypothesis formation by machine. (English) Zbl 1018.03025

Summary: The following are the aims of the paper: (1) To call the attention of the community of Discovery Science (DS) to certain existing formal systems for DS developed in Prague in the 1960s through the 1980s suitable for DS and unfortunately largely unknown. (2) To illustrate the use of the calculi in question by the example of the GUHA method of hypothesis generation by computer, subjecting this method to a critical evaluation in the context of contemporary data mining. (3) To stress the importance of fuzzy logic for DS and to present the state of mathematical foundations of fuzzy logic. (4) Finally, to present a running research program of developing calculi of symbolic fuzzy logic for DS and for a fuzzy GUHA method.

MSC:

03B80 Other applications of logic
68T27 Logic in artificial intelligence
03B70 Logic in computer science
03B52 Fuzzy logic; logic of vagueness

Software:

GUHA
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] R. Agrawal, R. Srikant, Fast algorithms for mining association rules, in: Proc. 20th Internat. Conf. on Very Large Data Bases, 1994.
[2] von Altrock, C., Fuzzy logic and neurofuzzy applications explained, (1995), Prentice-Hall, PTR Upper Saddle River, NJ
[3] B.G. Buchanan, Logics of Scientific Discovery, Stanford AI Memo No. 47, Stanford University 1966.
[4] Chatfield, C., Model uncertainty, data mining and statistical inference, J. roy. statist. soc. ser. A, 158, 419-466, (1995)
[5] Chau, T.; Wong, A.K.C., Pattern discovery by residual analysis and recursive partitioning, IEEE trans. knowledge data eng., 11, 833-852, (1999)
[6] CODASYL Data Base Task Group, DBTG Report, Technical Report, ACM, 1971.
[7] J. Doubravová, A. Sochorová, Testing interpersonal hypothesis of music using GUHA method. Languages Des., 1996.
[8] Fayyad, U.; Piatetsky-Shapiro, G.; Smyth, P., From data mining to knowledge discovery: an overview, (), 1-36
[9] Frawley, W.; Piatetsky-Shapiro, G.; Matheus, C., Knowledge discovery in databasesan overview, (), 1-27
[10] Glymour, C.; Madigan, D.; Pregibon, D.; Smyth, P., Statistical inference and data mining, Comm. ACM, 39, 35-41, (1996)
[11] Godo, L.; Esteva, F.; Hájek, P., Reasoning about probability using fuzzy logic, Neural network world, 10, 811-824, (2000)
[12] P. Hájek, On logics of discovery, in: Mathematical Foundations of Computer Science, Lecture Notes in Computer Science, Vol. 32, 1975, Springer, Berlin, pp. 30-45.
[13] Hájek, P., Decision problems of some statistically motivated monadic modal calculi, Internat. J. man-Mach. stud., 15, 351-358, (1981) · Zbl 0464.03015
[14] P. Hájek, The new version of the GUHA procedure ASSOC (generating hypotheses on associations)—mathematical foundations, in: COMPSTAT 1984—Proc. in Computational Statistics, 1984, pp. 360-365.
[15] Hájek, P., Metamathematics of fuzzy logic, (1998), Kluwer Academic Publishers Dordrecht · Zbl 0937.03030
[16] Hájek, P.; Esteva, F.; Godo, L., Fuzzy logic and probability, (), 237-244
[17] Hájek, P.; Havel, I.; Chytil, M., The GUHA-method of automatic hypotheses determination, Computing, 1, 293-308, (1966) · Zbl 0168.26105
[18] Hájek, P.; Havránek, T., On generation of inductive hypotheses, Internat. J. man-Mach. stud., 9, 415-438, (1977) · Zbl 0372.68026
[19] P. Hájek, T. Havránek, Mechanizing Hypothesis Formation (Mathematical Foundations for a General Theory), Springer, Berlin, Heidelberg, New York, 1978; also www.cs.cas.cz/ hajek/guhabook.
[20] Hájek, P.; Holeňa, M., Formal logics of discovery and hypothesis formation by machine, (), 291-302
[21] Hájek, P.; Sochorová, A.; Zvárová, J., GUHA for personal computers, Comput. statist. data anal., 19, 149-153, (1995) · Zbl 0875.62013
[22] Hálová, J.; Štrouf, O.; Žák, P.; Sochorová, A.; Uchida, N.; Yuzuvi, T.; Sakakibava, K.; Hirota, M., QSAR of catechol analogs against malignant melanoma using fingerprint descriptors, Quant. struct.-act. relat., 17, 37-39, (1998)
[23] Harmancová, D.; Holeňa, M.; Sochorová, A., Overview of the GUHA method for automating knowledge discovery in statistical data sets, (), 65-77
[24] Havránek, T., The approximation problem in computational statistics, (), 258-265
[25] Havránek, T., Statistical quantifiers in observational calculi: an application in GUHA method, Theory and decision, 6, 213-230, (1975) · Zbl 0313.68070
[26] Havránek, T., Towards a model theory of statistical theories, Synthese, 36, 441-458, (1977) · Zbl 0393.62001
[27] Holeňa, M., Exploratory data processing using a fuzzy generalization of the GUHA approach, (), 213-229
[28] Holeňa, M., Fuzzy hypotheses for GUHA implications, Fuzzy sets and systems, 98, 101-125, (1998)
[29] M. Holeňa, Traditional and modern artificial intelligence explores ecological data, in: H. Hyötyniemi, (Ed.), STeP 2000: Millenium of Artificial Intelligence, 2000.
[30] Holeňa, M., Observational logic integrates data mining based on statistics and neural networks, (), 440-445
[31] M. Holeňa, A fuzzy logic framework for testing vague hypotheses with empirical data, in: Proc. Fourth Internat. ICSC Symp. on Soft Computing and Intelligent Systems for Industry, ICSC Academic Press, Sliedrecht, 2001 pp. 401-407.
[32] M. Holeňa, Statistical, logic-based, and neural networks based methods for mining rules from data, in: A.K. Hyder, V. Bystritskii (Eds.), Multisensor and Sensor Data Fusion, NATO Science Series Publishers, in preparation.
[33] Holeňa, M.; Sochorová, A.; Zvárová, J., Increasing the diversity of medical data mining through distributed object technology, (), 442-447
[34] M. Holsheimer, A. Siebes, Data mining, The search for knowledge in databases, Technical Report, CWI, Amsterdam, 1994.
[35] M. Houtsma, A. Swami, Set-oriented mining of association rules, Technical Report, IBM Almaden Research Center, 1993. · Zbl 0875.68335
[36] M. Kamber, J. Han, J. Chiang, Using data cubes for metarule-guided mining of multi-dimensional association rules, Technical Report, Database Systems Research Laboratory, Simon Fraser University, 1997.
[37] Keisler, U.J., Probability quantifiers, (), 539-556
[38] Klösgen, W., Efficient discovery of interesting statements in databases, J. intell. inform. systems, 4, 53-69, (1995)
[39] Klösgen, W., Exploraa multipattern and multistrategy discovery assistant, (), 249-272
[40] Korn, F.; Labrinidis, A.; Kotidis, Y.; Faloutsos, C., Quantifiable data mining using ration rules, Vldb j., 8, 254-266, (2000)
[41] Kruse, R.; Meyer, K.D., Statistics with vague data, (1987), Reidel Dordrecht · Zbl 0663.62010
[42] D.I. Lin, Z. Kedem, Pincer search: a new algorithm for discovering the maximum frequent set, in: Proc. EDBT’98: Sixth Internat. Conf. on Extending Database Technology, 1998.
[43] H. Mannila, K. Räihä, Dependency inference, in: Proc. 13th Internat. Conf. on Very Large Data Bases, 1987, pp. 155-158.
[44] Mannila, H.; Toivonen, H.; Verkamo, I., Efficient algorithms for discovering association rules, (), 181-192
[45] A. Mueller, Fast sequential and parallel algorithms for association rule mining: a comparison, Technical Report, Department of Computer Science, University of Maryland, College Park, 1995.
[46] Pecen, L.; Eben, K., Non-linear mathematical interpretation of the oncological data, Neural network world, 6, 683-690, (1996)
[47] L. Pecen, E. Pelikán, H. Beran, D. Pivka, Short-term fx market analysis and prediction, in: Neural Networks in Financial Engeneering, 1996, pp. 189-196. · Zbl 0936.91029
[48] Pecen, L.; Ramešová, N.; Pelikán, E.; Beran, H., Application of the GUHA method on financial data, Neural network world, 5, 565-571, (1995)
[49] Plotkin, G.D., A further note on inductive generalization, Mach. intell., 6, 101-124, (1971) · Zbl 0261.68042
[50] Popper, K.R., The logic of scientific discovery, (1974), Hutchinson London
[51] Pudlák, P.; Springsteel, F., Complexity in mechanizing hypothesis formation, Theoret. comput. sci., 8, 203-225, (1979) · Zbl 0404.68097
[52] J. Rauch, Logical problems of statistical data analysis in data bases, in: Proc. 11th Seminar on Data Base Management Systems, 1988, pp. 53-63.
[53] Rauch, J., Logical calculi for knowledge discovery in databases, ()
[54] Rauch, J., Classes of four-fold table quantifiers, (), 203-210
[55] R. Srikant, Q. Vu, R. Agrawal, Mining association rules with item constraints, in: Proc. Third Internat. Conf. on Knowledge Discovery and Data Mining, KDD-97, 1997.
[56] Teller, A.; Veloso, M., Program evolution for data mining, Internat. J. expert systems, 8, 216-236, (1995)
[57] H. Toivonen, Discovery of frequent patterns in large data collections, Ph.D. Thesis, University of Helsinki, 1996. · Zbl 0878.68057
[58] Tukey, J.W., Exploratory data analysis, (1977), Addison-Wesley Reading, MA · Zbl 0409.62003
[59] Yager, R., On a semantics for neural networks based on fuzzy quantifiers, Internat. J. intell. systems, 7, 765-786, (1992) · Zbl 0794.68131
[60] Zadeh, L.A., What is soft computing?, Soft comput., 1, 1, (1997), (Editorial)
[61] Zaki, M.; Parathasarathy, S.; Ogihara, M.; Li, W., New parallel algorithms for fast discovery of association rules, Data mining knowledge discovery, 1, 343-373, (1997)
[62] Zembowicz, R.; Żytkov, J., From contingency tables to various forms of knowledge in databases, (), 329-352
[63] Zvárová, J.; Preiss, J.; Sochorová, A., Analysis of data about epileptic patients using guha method, Internat. J. medical inform., 45, 59-64, (1997)
[64] Żytkov, J.; Zembowicz, R., Contingency tables as the foundation for concepts, concept hierarchies and rules: the 49er system approach, Fund. inform., 30, 383-399, (1997) · Zbl 0881.68042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.