zbMATH — the first resource for mathematics

The tensor product of semigroups. (English) Zbl 0191.01601

Full Text: DOI
[1] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. 1, Math. Surveys, No. 7, Amer. Math. Soc., Providence, R. I., 1962, reprint 1964. · Zbl 0111.03403
[2] Paul Dubreil, Contribution à la théorie des demi-groupes, Mém. Acad. Sci. Inst. France (2) 63 (1941), no. 3, 52. · Zbl 0026.19605
[3] Pierre-Antoine Grillet, Morphismes spéciaux et décompositions, C. R. Acad. Sci. Paris Sér. A-B 266 (1968), A397 – A398 (French). Pierre-Antoine Grillet, Quelques propriétés des catégories non abéliennes, C. R. Acad. Sci. Paris Sér. A-B 266 (1968), A550 – A552 (French). Pierre-Antoine Grillet, La suite exacte d’homologie dans une catégorie non abélienne, C. R. Acad. Sci. Paris Sér. A-B 266 (1968), A604 – A606 (French).
[4] -, La suite exacte d’homologie dans une catégorie non-abélienne, C. R. Acad. Sci. Paris Sér. A 266 (1968), 604-606. · Zbl 0155.03603
[5] N. Kimura, Identity \( {(xy)^n} = {x^n}{y^n}\) on semigroups, (to appear).
[6] Saunders Mac Lane, Homology, Die Grundlehren der mathematischen Wissenschaften, Bd. 114, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. · Zbl 0818.18001
[7] Takayuki Tamura and Naoki Kimura, Existence of greatest decomposition of a semigroup, Kōdai Math. Sem. Rep. 7 (1955), 83 – 84. · Zbl 0067.01003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.