×

zbMATH — the first resource for mathematics

Local Euler characteristics. (English) Zbl 0191.19202

MSC:
14-XX Algebraic geometry
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Andre, M.: Méthode Simpliciale en Algèbre Homologique et Algèbre Commutative. Lecture Notes in Math. 37. Berlin-Heidelberg-New York: Springer 1967. · Zbl 0154.01402
[2] Cartier, P.: Groupes Algébriques et Groupes Formels. Colloque sur la théorie des groupes algébriques. Brussels: Centre Belge de Recherches Mathématiques 1962.
[3] Greenberg, M.: Rational points in Henselian discrete valuation rings. Publications Mathematiques, I.H.E.S. No. 31, 59-64, Paris: Presses Universitaires de France 1966. · Zbl 0142.00901
[4] Grothendieck, A.: Catégories Cofibrées Additives et Complexe Cotangent Relatif. Lecture Notes in Math. 79. Berlin-Heidelberg-New York: Springer 1968. · Zbl 0201.53803
[5] ?: Technique de descente et théorèmes d’existence en géométrie algébrique. Séminaire Bourbaki No. 190, December 1959. Amsterdam: W. A. Benjamin, Inc. 1966.
[6] Grothendieck, A.: Séminaire de Géométrie Algébrique. Mimeogr. notes, I.H.E.S.1, 1960/61;4, 1963/64. Amsterdam: North-Holland (to be published).
[7] Grothendieck, A.: Le Groupe de Brauer III (continuation of Le Groupe de Brauer I, II); Séminaire Bourbaki No. 290, 297. Mimeogr. notes I.H.E.S. Amsterdam: North-Holland (Paris: Massai & Cie.) 1968.
[8] Grothendieck, A., Demazure, M.: Schémas en Groups. Séminaire de Géométrie Algébrique de l’I.H.E.S. (mimeogr. notes) 1962/64. Amsterdam: North-Holland (to be published).
[9] ?, Dieudonné, J.: Elements de Géométrie Algébrique. Publications Mathématiques de l’I.H.E.S.. Paris: Presses Universitaires de France (Volume 1 appeared in 1960).
[10] Hartshorne, R.: Residues and duality. Lecture Notes in Math. No. 20. Berlin-Heidelberg-New York: Springer 1966. · Zbl 0212.26101
[11] Lang, S.: Algebraic groups over finite fields. Amer. J. Math.78, 555-563 (1956). · Zbl 0073.37901
[12] Lichtenbaum, S., Schlessinger, M.: The cotangent complex of a morphism. Trans. Amer. Math. Soc., 41-70, July, 1967. · Zbl 0156.27201
[13] Mazur, B.: Local flat duality (to appear in American Journal of Math.). · Zbl 0199.24501
[14] Quillen, D.: Homotopic algebra. Lecture notes in Math. Berlin-Göttingen-New York: Springer 1967. · Zbl 0168.20903
[15] ?: Differentials and derivations. Mimeogr. notes M.I.T. 1967 (a Summary appears in: Proceedings of the Conference on Categorial Algebra. American Math. Soc. Providence 1969).
[16] Raynaud, M.: Passage au quotient par une relation d’equivalence plate. Proc. Conf. Local Fields, 78-85. Berlin-Heidelberg-New York: Springer 1967.
[17] Roberts, L.: On the flat cohomology of finite group schemes. Harvard Thesis 1968.
[18] Serre, J.-P.: Algèbre Locale. Lecture notes in Math. Springer-Verlag.
[19] ?: Lie algebras and Lie groups. New York: Benjamin 1965. · Zbl 0232.20017
[20] ?: Corps Locaux. Paris: Hermann & Cie. 1962.
[21] ?: Cohomologie Galoisienne. Lecture Notes in Math. 5. Berlin-Göttingen-New York: Springer 1964. · Zbl 0143.05901
[22] Shatz, S.: The cohomological dimension of certain Grothendieck topologies. Annals of Math.83, No. 3, 572-595 (1966). · Zbl 0154.20802
[23] Shuck, J.: Counting zeros of polynomials modulop k via integration onp-adic manifolds. Northeastern University doctoral dissertation, 1969, and A.M.S. Lecture notes in connection with the Summer Institute in Number Theory, Stony Brook, 1969. Mimeogr. form, distributed by American Math. Soc., Providence.
[24] Tate, J.:p-divisible groups. Proceedings Conference on Local Fields, 158-183. Berlin-Göttingen-New York: Springer 1967. · Zbl 0157.27601
[25] Tate, J., Duality theorems in Galois cohomology over number fields, pp. 288-295. Proceedings of the International Congress of Mathematicians, Djursholm: Institut Mittag-Leffler 1962.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.