×

zbMATH — the first resource for mathematics

Cohomology and holomorphic differential forms on complex analytic spaces. (English) Zbl 0191.37902

PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] Reiffen H.J. : Das Lemma von Poincaré für holomorphe Differentialformen auf komplexen Räumen . Math. Zeitschr. 101 , 269 - 284 ( 1967 ). Article | MR 223599 | Zbl 0164.09401 · Zbl 0164.09401
[2] Reiffen H.J. und Vetter U. : Pfaffsche Formen auf komplexen Räumen . Math. Ann. 167 , 338 - 350 ( 1966 ). MR 216031 | Zbl 0154.08404 · Zbl 0154.08404
[3] Hironaka H. : Resolution of singularities of an algebraic variety over a field of characteristic zero . Ann. of Math. 79 , 109 - 203 ( 1964 ). MR 199184 | Zbl 0122.38603 · Zbl 0122.38603
[4] Narasimhan R. : Introduction to the Theory of Analytic Spaces . Lecture Notes ( 1966 ), Springer-Verlag . Berlin . MR 217337 | Zbl 0168.06003 · Zbl 0168.06003
[5] Grauert H. : Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen Inst. Hautes Etudes Sci. (Pub. Math. n^\circ 5 ) Paris 1960 . Numdam | MR 121814 | Zbl 0158.32901 · Zbl 0158.32901
[6] , [7] Succi F. : Il teorema di De Rham olomorfo nel caso relativo . Rend. Acc. Lincei v. 42 fasc. 6 ( 1967 ) e v. 43 fasc. 5 ( 1967 ). Zbl 0158.33101 · Zbl 0158.33101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.