Equidivisible semigroups. (English) Zbl 0192.34504

Full Text: DOI


[1] Clifford, A. H.; Preston, G. B., The algebraic theory of semigroups I, Am. Math. Soc. Surveys, 7 (1961) · Zbl 0111.03403
[2] Clifford, A. H.; Preston, G. B., The algebraic theory of semigroups II, Am. Math. Soc. Surveys, 7 (1967) · Zbl 0178.01203
[3] Elgot, C. C., Decision problems of finite automata design and related arithmetics, Trans. Am. Math. Soc., 98, 21-51 (1961) · Zbl 0111.01102
[4] Kleene, S. C., Representation of events in nerve nets and finite automata. The Rand Corporation, Rm-704 (1951), and Automata studies, Ann. Math. Studies, 34, 3-41 (1956)
[5] Ljapin, E. S., Semigroups (1960), Gosudarstv. Izdat. Fiz.-Mat. Lit.: Gosudarstv. Izdat. Fiz.-Mat. Lit. Moscow, [English translation, Am. Math. Soc., Providence, R. I., 1963] · Zbl 0100.02301
[6] McKnight, J. D., Fine quotients of semigroups, General Electric Computer Laboratory, 63 CDL-8 (1963)
[7] McKnight, J. D., Kleene quotient theorems, Pacific J. Math., 14, 1343-1352 (1964) · Zbl 0144.01201
[8] Teissier, M., Sur lese´quivalences régulie‘res dans les demi-groupes, C. R. Acad. Sci., 232, 1987-1989 (1951), Paris · Zbl 0042.25401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.