×

zbMATH — the first resource for mathematics

Bond graph approach as analysis tool in thermofluid model library conception. (English) Zbl 1037.93006
The bond graph is a modelling and simulation tool providing many possibilities. Here, a methodology based on causal and behavioral bond graph analysis is applied to build a dynamic icon model library in the continuous thermofluid process.
The developed approach is implemented making use of the SYMBOLS-2000 software presented in some publications. This approach is applied to a complex steam generator installation.
The methodology, given as an assistant tool, is proposed so that the industrial designer can easily build a thermofluid model of the technological processes involved.

MSC:
93A30 Mathematical modelling of systems (MSC2010)
93C95 Application models in control theory
80A20 Heat and mass transfer, heat flow (MSC2010)
Software:
SYMBOLS 2000
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Frank, P., Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy—a survey and some new results, Automatica, 26, 3, 459-474, (1990) · Zbl 0713.93052
[2] Frank, P.; Seliger, R., Fault detection and isolation in automatic processor control and dynamic systems, Academic press, 49, 241-287, (1991)
[3] Iserman, R., Detection based on modelling and estimation methods, a survey, Automatica, 20, 387-404, (1994)
[4] B. Ould Bouamama, M. Staroswiecki, R. Litwak, Automatique et Statistiques Pour Le Diagnostic Sous la Direction de B. Dubuisson, hermes edition, Paris, France, 2000.
[5] P.M. Frank, Advanced fault detection and isolation schemes using non-linear and robust observers, in: R. Iserman (Ed.), 10th World Congress on Automatic Control, Paris, 1987.
[6] R. Slier, P. Frank, Robust Observer-Based Fault Diagnosis in Non Linear Uncertain Systems, Advances in Fault Diagnosis for Dynamic Systems: Model Based Approaches, Springer, Berlin, 2000.
[7] Westerberg, L.T.; Benjamin, B.R., Thoughts on a future equation-oriented flowsheeting system, Comput. chem. eng., 9, 5, 517-526, (1985)
[8] L.T. Briegler, Chemical process simulation, Chem. Eng. (1989) 50-61.
[9] Simulink, Dynamic System Simulation for Matlab, Math Works, France, 1997.
[10] H. Elmqvist, F.E. Cellier, M. Otter, Object oriented modelling of hybrid systems, in: E.J.H. Kerckhoffs (Ed.), ESS’93 European Simulation Symposium, The Netherlands, 1993.
[11] Wollhaf, C.; Schultz, K.; Engell, S., Basip-batch process simulation with dynamically reconfigured process dynamics, Comput. chem. eng. suppl. B, 20, 972, 1281-1286, (1996)
[12] A. Moyse, L. Jourda, J.M. Le-Lann, X. Joulia, Process, hydraulic and control devices in odysseo, an object-oriented framework for process dynamic simulation, Monpellier, 5-7 October 1999.
[13] M. Tagina, J. Cassar, G. Dauphin-Tangy, M. Staroswiecki, Monitoring of systems modelled by bond graph, in: F.E. Cellier, J.J. Granda (Eds.), ICBGM’95. International Conference on Bond Graph Modeling, Las Vegas, 1995, pp. 275-280.
[14] B. Ould Bouamama, G. Dauphin-Tanguy, M. Staroswiecki, D. Amo-Bravo, Bond graph analysis of structural FDI properties in mechatronic systems, in: R. Iserman (Ed.), First IFAC Conference on Mechatronic Systems, Vol. 3, Darmsdadt, Germany, IFAC, Laxenburg, 18-20 September 2000, pp. 1057-1062.
[15] B. Ould-Bouamama, M. Staroswiecki, G. Dauphin-Tanguy, A. Khellassi, A. Benhalla, M. Zelmat, Monitoring ability analysis using bond graph approach. application to distillation column, in: G. Stephanopoulos, J. Romagndi (Eds.), Proceedings of Fourth IFAC Workshop on “on-Line Fault Detection and Supervision in the Chemical Process Industries, Jejudo Island, South Korea, IFAC, Laxenburg, June 7-8, 2001, pp. 388-393.
[16] B. Ould Bouamama, F. Busson, G. Dauphin-Tanguy, and M. Staroswiecki, Analysis of structural properties of thermodynamic systems, in: A. Edelmayer (Ed.), Fourth IFAC Symposium on Fault Detection Supervision and Safety for Technical Processes, Vol. 2, Budapest, IFAC, Laxenburg, 14-16 June 2000, pp. 1068-1073.
[17] A. Mukherjee, A.K. Samantaray, System modelling through bond graph objects on SYMBOLS 2000, in: F.E. Cellier, J.J. Granda (Eds.), International Conference on Bond Graph Modeling and Simulation (ICBGM’01), Vol. 33, Phoenix, AZ, SCS Publishing, Simulation Series, 2001, pp. 164-170.
[18] A. Samanatary, B. Ould Bouamama, G. Dauphin-Tanguy, M. Staroswiecki. Causality inversion approach in derivation of analytical redundancy relations for fault detection and isolation. international, in: F.E. Cellier, J.J. Granda (Eds.), ICBGM’2003, Orlando, FL, 19-23 January 2003.
[19] Paynter, H., Analysis and design of engineering systems, (1961), MIT Press Cambridge, MA
[20] Rosenberg, R.; Karnopp, D., A definition of the bond graph language, J. dynamic systems meas. control trans. ASME, 3, 179-182, (1972)
[21] Thoma, J., Problèmes thermodynamiques des machines hydrauliques, Energie fluide, 1, 61-66, (1975)
[22] Karnopp, D.; Margolis, D.; Rosenberg, R., Systems dynamics: A unified approach, (1990), Wiley New York
[23] Cellier, F.E., Continuous system modelling, (1991), Springer New York
[24] G. Dauphin-Tanguy, Les bond graphs, Paris, France, 2000.
[25] Bredveld, P.C., Multibond graph elements in physical systems theory, J. franklin inst. (special issue), 319, 1/2, 1-36, (1985)
[26] Thoma, J., Simulation by bondgraphs. introduction to a graphical method, (1990), Springer Berlin, Heidelberg
[27] Heny, C.; Simanca, D.; Delagado, M., Pseudo-bond graph model and simulation of a continuous stirred tank reactor, J. franklin inst., 337, 21-42, (2000)
[28] Brown, F.T., Convection bonds and bond graphs, J. franklin inst., 325, 5/6, 871-886, (1991) · Zbl 0729.76512
[29] J. Greifeneder, F.E. Cellier, Modeling multi-phase systems using bond graphs, in: F.E. Cellier, J.J. Granda (Eds.), Proceedings of the International Conference on Bond Graph Modeling and Simulation (ICBGM’2001), Phoenix, AZ, 2001, pp. 285-291.
[30] Thoma, J.U.; Ould Bouamama, B., Modelling and simulation in thermal and chemical engineering. bond graph approach, (2000), Springer Berlin
[31] Karnopp, D., State variables and pseudo-bond graphs for compressible thermo-fluid systems, Trans. ASME, J. dynamic systems meas. control, 101, 3, 201-204, (1979)
[32] Karnopp, D.; Azerbaijani, S., Pseudo bond graphs for generalised comportmental models in engineering and physiology, J. franklin inst., 312, 2, 95-108, (1981)
[33] F. Busson, B. Ould Bouamama, Monitoring of steam generator using a bond graph approach, in: Symposium on Power Plant and Power Systems Control, Brussels, Belgium, IFAC, April 26-29, 2000 pp. 318-323 (preprint).
[34] Lefévre, J.; Barreto, J., A mixed block diagram bond graph approach for biochemical models with mass action rate law kinetics, J. franklin inst., 319, 1/2, 201-215, (1985)
[35] Ordys, A., Modeling and simulation of power generation plants, (1994), Springer Berlin, Germany
[36] Tylee, L., Pseudo bond graph representation of PWR pressurised dynamic, Trans. ASME J. dynamic systems meas. control, 105, 255-261, (1983)
[37] A. Mukherjee, R. Karmakar, Modelling and Simulation of Engineering Systems Through Bond Graphs, Alpha Sciences International, Pangbourne, UK, 2000.
[38] Karnopp, D., Bond graph models for electrochemical energy storageelectrical, chemical and thermal effects, Franklin inst., 327, 983-992, (1990)
[39] P.O. Moksnes, Modeling two-phase thermo-fluid systems using bond graph, Dr. ing. Thesis, University of Sciences and Technology, Department of Marine Engineering, Norway, 1997.
[40] Ordys, A.W.; Pike, A.W.; Johnson, M.A.; Katebi, R.M.; Grimble, M.J., Modelling and simulation of power generation plants, (1994), Springer Berlin
[41] Kothar, M.; Mettler, B.; Morrari, M.; Bendotti, P., Level control in the steam generator of a nuclear power plant, IEEE trans. control systems technology, 8, 1, 55-69, (2000)
[42] Aström, K.; Bell, R., Drum-boiler dynamics, Automatica, 36, 363-378, (2000) · Zbl 0990.93004
[43] Nahavandi, A.N.; Rollen, R.F.V., A space dependant dynamic analysis of a bwr, Nucl. sci. eng., 20, 392-413, (1964)
[44] Péneau, S.; Humeau, J.P.; Jarny, Y., Front motion and convective heat flux determination in a phase change process, Inverse problems eng., 4, 1, 53-91, (1996)
[45] Ould Bouamama, B.; Staroswiecki, M.; Riera, B.; Cherifi, E., Multi-modelling of industrial steam generator, Control eng. practice (CEP), 8/11, 1249-1260, (2000)
[46] B. Ould Bouamama, Model builder for thermo-fluid systems using a bond graph and functional modelling, in: N. Giambasi, C. Frydman (Eds.), Proceedings of 13th European Simulation Symposium, ESS’01, Marseille, France, October 18-20, IEEE Press, 2001, pp. 822-826.
[47] B. Ould Bouamama, J. Thoma, J. Cassar, Bond graph modelisation of steam condensers, in: IEEE, International Conference on Systems Man, and Cybernetics: Computational Cybernetics and Simulation, Vol. 3, Orlando, USA, 1997, pp. 2490-2494.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.