×

Infinite dimensional multipoint methods and the solution of two point boundary value problems. (English) Zbl 0193.12702


PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Antosiewicz, H. A., Rheinboldt, W. C.: Numerical analysis and functional analysis, chapter 14 of Survey of numerical analysis (J. Todd, Ed.). New York: McGrawHill 1962.
[2] Bellman, R. E., Kalaba, R. E.: Quasilinearization and nonlinear boundary-value problems. New York: American Elsevier Publishing Co., Inc., 1965 · Zbl 0139.10702
[3] Bosarge, W. E., Jr., Falb, P. L.: A multipoint method of third order. J. of Optimization Theory 4, 156–167 (1969). · Zbl 0172.18703
[4] Coddington, E. A., Levinson, N.: Theory of ordinary differential equations. New York: McGraw-Hill 1966. · Zbl 0064.33002
[5] Collatz, L.: Funktionalanalysis and Numerische Mathematik. Berlin- Göttingen-Heidelberg-New York: Springer 1964. · Zbl 0139.09802
[6] —- The numerical treatment of differential equations. Berlin-Heidelberg-New York: Springer 1966. · Zbl 0135.37901
[7] Falb, P. L., De jong, J. L.: Some successive approximation methods in control and oscillation theory. New York: Academic Press 1969 · Zbl 0202.09603
[8] Kantorovich, L. V., Akilov, G. P.: Functional analysis in normed spaces. New York: MacMillan 1964. · Zbl 0127.06104
[9] Traub, J.: Iterative methods for the solution of equations. New Jersey: Prentice Hall 1964. · Zbl 0121.11204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.