×

zbMATH — the first resource for mathematics

Classifying spaces and infinite symmetric products. (English) Zbl 0193.23604

Keywords:
topology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Dan Burghelea and Aristide Deleanu, On certain two-space homology-cohomology groups, Rev. Roumaine Math. Pures Appl. 11 (1966), 703 – 712. · Zbl 0188.28403
[2] H. Cartan, Séminaire 7: Algèbres d’Eilenberg-MacLane et homotopie, Paris, 1955.
[3] Albrecht Dold, Partitions of unity in the theory of fibrations, Ann. of Math. (2) 78 (1963), 223 – 255. · Zbl 0203.25402 · doi:10.2307/1970341 · doi.org
[4] Albrecht Dold and René Thom, Quasifaserungen und unendliche symmetrische Produkte, Ann. of Math. (2) 67 (1958), 239 – 281 (German). · Zbl 0091.37102 · doi:10.2307/1970005 · doi.org
[5] Samuel Eilenberg and Norman Steenrod, Foundations of algebraic topology, Princeton University Press, Princeton, New Jersey, 1952. · Zbl 0047.41402
[6] Witold Hurewicz, On the concept of fiber space, Proc. Nat. Acad. Sci. U. S. A. 41 (1955), 956 – 961. · Zbl 0067.15902
[7] R. James Milgram, The bar construction and abelian \?-spaces, Illinois J. Math. 11 (1967), 242 – 250. · Zbl 0152.40502
[8] John Milnor, Construction of universal bundles. I, Ann. of Math. (2) 63 (1956), 272 – 284. · Zbl 0071.17302 · doi:10.2307/1969609 · doi.org
[9] John Milnor, On spaces having the homotopy type of a \?\?-complex, Trans. Amer. Math. Soc. 90 (1959), 272 – 280. · Zbl 0084.39002
[10] M. Rothenberg and N. E. Steenrod, The cohomology of classifying spaces of \?-spaces, Bull. Amer. Math. Soc. 71 (1965), 872 – 875. · Zbl 0132.19201
[11] N. E. Steenrod, A convenient category of topological spaces, Michigan Math. J. 14 (1967), 133 – 152. · Zbl 0145.43002
[12] N. E. Steenrod, Milgram’s classifying space of a topological group, Topology 7 (1968), 349 – 368. · Zbl 0177.51601 · doi:10.1016/0040-9383(68)90012-8 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.