×

zbMATH — the first resource for mathematics

Positive harmonic functions on Lipschitz domains. (English) Zbl 0193.39601

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. S. Besicovitch, A general form of the covering principle and relative differentiation of additive functions. II, Proc. Cambridge Philos. Soc. 42 (1946), 1 – 10. · Zbl 0063.00353
[2] M. Brelot and J. L. Doob, Limites angulaires et limites fines, Ann. Inst. Fourier (Grenoble) 13 (1963), no. fasc. 2, 395 – 415 (French). · Zbl 0132.33902
[3] Lennart Carleson, On the existence of boundary values for harmonic functions in several variables, Ark. Mat. 4 (1962), 393 – 399 (1962). · Zbl 0107.08402 · doi:10.1007/BF02591620 · doi.org
[4] J. L. Doob, A non-probabilistic proof of the relative Fatou theorem, Ann. Inst. Fourier. Grenoble 9 (1959), 293 – 300. · Zbl 0095.08203
[5] Richard A. Hunt and Richard L. Wheeden, On the boundary values of harmonic functions, Trans. Amer. Math. Soc. 132 (1968), 307 – 322. · Zbl 0159.40501
[6] Robert S. Martin, Minimal positive harmonic functions, Trans. Amer. Math. Soc. 49 (1941), 137 – 172. · Zbl 0025.33302
[7] Linda Naïm, Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel, Ann. Inst. Fourier, Grenoble 7 (1957), 183 – 281 (French). · Zbl 0086.30603
[8] Linda Lumer-Naïm, Sur le théorème de Fatou généralisé, Ann. Inst. Fourier (Grenoble) 12 (1962), 624 – 626 (French). · Zbl 0123.29202
[9] Kjell-Ove Widman, On the boundary values of harmonic functions in \?³, Ark. Mat. 5 (1964), 221 – 230 (1964). · Zbl 0132.34002 · doi:10.1007/BF02591124 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.