×

zbMATH — the first resource for mathematics

A solution to the splitting mixed group problem of Baer. (English) Zbl 0194.05301

Keywords:
group theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Reinhold Baer, The subgroup of the elements of finite order of an abelian group, Ann. of Math. (2) 37 (1936), no. 4, 766 – 781. · Zbl 0015.20202
[2] Reinhold Baer, Abelian groups without elements of finite order, Duke Math. J. 3 (1937), no. 1, 68 – 122. · Zbl 0016.20303
[3] Reinhold Baer, Die Torsionsuntergruppe einer Abelschen Gruppe, Math. Ann. 135 (1958), 219 – 234 (German). · Zbl 0081.25704
[4] Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. · Zbl 0075.24305
[5] Stephen U. Chase, Function topologies on abelian groups, Illinois J. Math. 7 (1963), 593 – 608. · Zbl 0171.28703
[6] S. Chase, On group extensions and a problem of J. H. C. Whitehead, Topics in Abelian Groups (Proc. Sympos., New Mexico State Univ., 1962), Scott, Foresman and Co., Chicago, Ill., 1963, pp. 173 – 193.
[7] Jenő Erdős, On the splitting problem of mixed abelian groups, Publ. Math. Debrecen 5 (1958), 364 – 377.
[8] L. Fuchs, Abelian groups, Publishing House of the Hungarian Academy of Sciences, Budapest, 1958. · Zbl 0091.02704
[9] D. K. Harrison, Infinite abelian groups and homological methods, Ann. of Math. (2) 69 (1959), 366 – 391. · Zbl 0100.02901
[10] Paul Hill and Charles Megibben, Extending automorphisms and lifting decompositions in Abelian groups, Math. Ann. 175 (1968), 159 – 168. · Zbl 0183.03202
[11] R. J. Nunke, Slender groups, Acta Sci. Math. (Szeged) 23 (1962), 67 – 73. · Zbl 0108.02601
[12] J. Rotman, On a problem of Baer and a problem of Whitehead in Abelian groups, Acta. Math. Acad. Sci. Hungar. 12 (1961), 245-254. · Zbl 0101.01903
[13] Ernst Specker, Additive Gruppen von Folgen ganzer Zahlen, Portugaliae Math. 9 (1950), 131 – 140 (German). · Zbl 0041.36314
[14] Carl Peercy Walker, Properties of \?\?\? and quasi-splitting of Abelian groups, Acta Math. Acad. Sci. Hungar. 15 (1964), 157 – 160. · Zbl 0136.29006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.