Love, R. F. Locating facilities in three-dimensional space by convex programming. (English) Zbl 0194.20805 Nav. Res. Logist. Q. 16, 503-516 (1969). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 12 Documents Keywords:operations research × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Baumol, ”A Warehouse Location Problem,”, Operations Research 6 pp 252– (1958) · doi:10.1287/opre.6.2.252 [2] Bellman, ”An Application of Dynamic Programming to Location - Allocation Problems,”, SIAM Review 7 pp 126– (1965) · Zbl 0127.11104 · doi:10.1137/1007012 [3] Burstall, ”Evaluation of Transport Cost For Alternative Factory Sites,”, Operational Research Quarterly 13 pp 345– (1962) · doi:10.1057/jors.1962.51 [4] Carroll, ”The Created Response Surface Technique for Optimizing Non-Linear Restrained Systems,”, Operations Research 9 pp 169– (1961) · Zbl 0111.17004 · doi:10.1287/opre.9.2.169 [5] Cherniack , H. D. J. B. Schneider ”A New Approach to the Delineation of Hospital Service Areas,” Regional Science Research Institute Seattle, Washington [6] Cooper, ”Heuristic Methods for Location - Allocation Problems,”, SIAM Review 6 pp 37– (1964) · Zbl 0956.90014 · doi:10.1137/1006005 [7] Cooper, ”Location - Allocation Problems,”, Operations Research 11 pp 331– (1963) · Zbl 0113.14201 · doi:10.1287/opre.11.3.331 [8] Efroymson, ”A Branch-Bound Algorithm for Plant Location,”, Operations Research 14 pp 213– (1966) · doi:10.1287/opre.14.3.361 [9] Eggleston, Convexity pp 51– (1963) [10] Fiacco, ”The Sequential Unconstrained Minimization Technique for Nonlinear Programming A Primal-Dual Method,”, Management Science 10 pp 360– (1964) · doi:10.1287/mnsc.10.2.360 [11] Fiacco, ”Computational Algorithm for the Sequential Unconstrained Minimization Technique for Nonlinear Programming,”, Management Science 10 pp 601– (1964) · doi:10.1287/mnsc.10.4.601 [12] Fiacco, ”Extension of SUMT for Nonlinear Programming: Equality Constraints and Extrapolation,”, Management Science 12 pp 816– (1966) · Zbl 0141.35702 · doi:10.1287/mnsc.12.11.816 [13] Francis, ”Conditions for Optimum-Property Facility Design,”, Operations Research 15 pp 448– (1967) · Zbl 0183.23302 · doi:10.1287/opre.15.3.448 [14] Goldstein, ”Cauchy’s Method of Minimization,”, Numerische Mathematik 4 pp 146– (1962) · Zbl 0105.10201 · doi:10.1007/BF01386306 [15] Haley, ”The Siting of Depots,”, The International Journal of Production Research 2 pp 41– (1963) · doi:10.1080/00207546308947811 [16] Hillier, ”Quadratic Assignment Problem Algorithms and the Location of Indivisible Facilities,”, Management Science 13 pp 42– (1966) · doi:10.1287/mnsc.13.1.42 [17] Kataoka, ”A Stochastic Programming Model,”, Econometrica 31 pp 181– (1963) · Zbl 0125.09601 · doi:10.2307/1910956 [18] Kuehn, ”A Heuristic Program for Locating Warehouses,”, Management Science 9 pp 643– (1963) · doi:10.1287/mnsc.9.4.643 [19] Kuenne, ”An Efficient Algorithm for the Numerical Solution of the Generalized Weber Problem in Spatial Economics,”, Journal of Regional Science 4 pp 21– (1962) · doi:10.1111/j.1467-9787.1962.tb00902.x [20] Love, ”A Nonlinear Programming Approach to Facilities Location Problems,”, Journal of the Canadian Operational Research Society 5 pp 136– (1967) [21] Manne, ”Plant Location Under Economics-of-Scale: Decentralization and Computation,”, Management Science 11 pp 213– (1964) · doi:10.1287/mnsc.11.2.213 [22] Palermo , F. P. ”A Network Minimization Problem,” 1961 · Zbl 0101.13202 [23] Shycon, ”Simulation-Tool for Distribution,”, Harvard Business Review 41 pp 65– (1960) [24] Steinberg, ”The Blackboard Wiring Problem: A Placement Algorithm,”, SIAM Review 3 pp 37– (1960) · Zbl 0097.14703 · doi:10.1137/1003003 [25] Vergin, ”An Algorithm and Computational Procedure for Locating Economic Facilities,”, Management Science 13 pp 240– (1967) · doi:10.1287/mnsc.13.6.B240 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.