×

zbMATH — the first resource for mathematics

A class of convex bodies. (English) Zbl 0194.23102

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. D. Alexandrov, A theorem on convex polyhedra, Trudy Mat. Inst. Steklov. Sect. Math. 4 (1933), 87. (Russian)
[2] -, Zur Theorie der gemischten Volumina von Konvexen Körpern, II, Neue Ungleichungen zwischen den gemischten Volumina und ihre Anwendungen, Mat. Sb. 2 (1937), 1205-1238. (Russian) · Zbl 0018.27601
[3] W. Blaschke, Vorlesungen über Differential-geometrie. Vol. II, Affine Differentialgeometrie, Springer-Verlag, Berlin, 1923.
[4] Wilhelm Blaschke, Kreis und Kugel, Walter de Gruyter & Co., Berlin, 1956 (German). 2te Aufl. · Zbl 0070.17501
[5] W. Blaschke and K. Reidemeister, Über die Entwicklung der Affingeometrie, Jber Deutsch. Math.-Verein. 31 (1922), 63-82. · JFM 48.0804.01
[6] Ethan D. Bolker, Functions resembling quotients of measures, Trans. Amer. Math. Soc. 124 (1966), 292 – 312. · Zbl 0144.04802
[7] T. Bonnesen and W. Fenchel, Theorie der konvexen Körper, Springer-Verlag, Berlin-New York, 1974 (German). Berichtigter Reprint. · Zbl 0277.52001
[8] Joh. Jak Burckhardt, Über konvexe Körper mit Mittelpunkt, Vierteljschr. Naturforsch. Ges. Zürich 85 (1940), no. Beiblatt (Festschrift Rudolf Fueter), 149 – 154 (German). · Zbl 0023.38003
[9] G. D. Chakerian, Sets of constant relative width and constant relative brightness, Trans. Amer. Math. Soc. 129 (1967), 26 – 37. · Zbl 0161.41606
[10] Gustave Choquet, Mesures coniques, affines et cylindriques: structure et opérations, C. R. Acad. Sci. Paris Sér. A-B 266 (1968), A567 – A569 (French). · Zbl 0176.44403
[11] Gustave Choquet, Mesures coniques et affines invariantes par isométries Zonoformes, zonoèdres et fonctions de type négatif, C. R. Acad. Sci. Paris Sér. A-B 266 (1968), A619 – A621 (French). · Zbl 0176.44404
[12] H. S. M. Coxeter, The classification of zonohedra by means of projective diagrams, J. Math. Pures Appl. (9) 41 (1962), 137 – 156. · Zbl 0123.13701
[13] H. S. M. Coxeter, Regular polytopes, Second edition, The Macmillan Co., New York; Collier-Macmillan Ltd., London, 1963. · Zbl 0118.35902
[14] Nelson Dunford and Jacob T. Schwartz, Linear operators. Part I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. General theory; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1958 original; A Wiley-Interscience Publication. Nelson Dunford and Jacob T. Schwartz, Linear operators. Part II, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. Spectral theory. Selfadjoint operators in Hilbert space; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1963 original; A Wiley-Interscience Publication. Nelson Dunford and Jacob T. Schwartz, Linear operators. Part III, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. Spectral operators; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1971 original; A Wiley-Interscience Publication.
[15] H. G. Eggleston, Convexity, Cambridge Tracts in Mathematics and Mathematical Physics, No. 47, Cambridge University Press, New York, 1958. · Zbl 0086.15302
[16] W. Fenchel and B. Jessen, Mengenfunctionen und konvexe Körper, Det. Kgl. Danske Vid. Selsk. Math.-Fys. Medd. 3 (1938). · JFM 64.0733.05
[17] W. J. Firey, The brightness of convex bodies, Technical Report No. 19, Department of Mathematics, Oregon State University, Corvallis, Oregon, 1965. · Zbl 0128.16404
[18] William J. Firey, Blaschke sums of convex bodies and mixed bodies, Proc. Colloquium on Convexity (Copenhagen, 1965) Kobenhavns Univ. Mat. Inst., Copenhagen, 1967, pp. 94 – 101. · Zbl 0153.51902
[19] S. Gelbart, \( {L^1}\)-unit balls and conical measures, Proc. Amer. Math. Soc. (to appear).
[20] B. Grünbaum, Projection constants, Trans. Amer. Math. Soc. 95 (1960), 451 – 465. · Zbl 0095.09002
[21] Branko Grünbaum, Convex polytopes, With the cooperation of Victor Klee, M. A. Perles and G. C. Shephard. Pure and Applied Mathematics, Vol. 16, Interscience Publishers John Wiley & Sons, Inc., New York, 1967. · Zbl 0152.20602
[22] Paul R. Halmos, The range of a vector measure, Bull. Amer. Math. Soc. 54 (1948), 416 – 421. · Zbl 0033.05201
[23] Paul R. Halmos, Measure Theory, D. Van Nostrand Company, Inc., New York, N. Y., 1950. · Zbl 0040.16802
[24] C. S. Herz, A class of negative-definite functions, Proc. Amer. Math. Soc. 14 (1963), 670 – 676. · Zbl 0178.54102
[25] Shizuo Kakutani, Concrete representation of abstract (\?)-spaces and the mean ergodic theorem, Ann. of Math. (2) 42 (1941), 523 – 537. · Zbl 0027.11102 · doi:10.2307/1968915 · doi.org
[26] Shizuo Kakutani, Concrete representation of abstract (\?)-spaces. (A characterization of the space of continuous functions.), Ann. of Math. (2) 42 (1941), 994 – 1024. · Zbl 0060.26604 · doi:10.2307/1968778 · doi.org
[27] Robert P. Kaufman and Neil W. Rickert, An inequality concerning measures, Bull. Amer. Math. Soc. 72 (1966), 672 – 676. · Zbl 0144.29803
[28] A. Liapounoff, Sur les fonctions-vecteurs complètement additives, Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR] 4 (1940), 465 – 478 (Russian, with French summary). · Zbl 0024.38504
[29] Joram Lindenstrauss, On the extension of operators with a finite-dimensional range, Illinois J. Math. 8 (1964), 488 – 499. · Zbl 0132.09803
[30] Joram Lindenstrauss, A short proof of Liapounoff’s convexity theorem, J. Math. Mech. 15 (1966), 971 – 972. · Zbl 0152.24403
[31] J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in \?_\?-spaces and their applications, Studia Math. 29 (1968), 275 – 326. · Zbl 0183.40501
[32] N. Lindquist, Representations of central convex bodies, Thesis, Oregon State University, Corvallis, Oregon, 1968.
[33] E. Mayer, Größte Polygone mit gegebenen Seitenvektoren, Comment. Math. Helv. 10 (1937), no. 1, 288 – 301 (German). · JFM 64.0732.03 · doi:10.1007/BF01214297 · doi.org
[34] Herbert Naumann, Beliebige konvexe Polytope als Schnitte und Projektionen höherdimensionaler Würfel, Simplizes und Masspolytope, Math. Z. 65 (1956), 91 – 103 (German). · Zbl 0073.39203 · doi:10.1007/BF01473872 · doi.org
[35] R. E. A. C. Paley, Some theorems on abstract spaces, Bull. Amer. Math. Soc. 42 (1936), no. 4, 235 – 240. · Zbl 0014.06704
[36] C. M. Petty, Projection bodies, Proc. Colloquium on Convexity (Copenhagen, 1965) Kobenhavns Univ. Mat. Inst., Copenhagen, 1967, pp. 234 – 241.
[37] Neil W. Rickert, The range of a measure, Bull. Amer. Math. Soc. 73 (1967), 560 – 563. · Zbl 0153.38201
[38] Neil W. Rickert, Measures whose range is a ball, Pacific J. Math. 23 (1967), 361 – 371. · Zbl 0191.14303
[39] D. Rutovitz, Some parameters associated with finite-dimensional Banach spaces, J. London Math. Soc. 40 (1965), 241 – 255. · Zbl 0125.06402 · doi:10.1112/jlms/s1-40.1.241 · doi.org
[40] Rolf Schneider, Zur einem Problem von Shephard über die Projektionen konvexer Körper, Math. Z. 101 (1967), 71 – 82 (German). · Zbl 0173.24703 · doi:10.1007/BF01135693 · doi.org
[41] Rolf Schneider, Über eine Integralgleichung in der Theorie der konvexen Körper, Math. Nachr. 44 (1970), 55 – 75 (German). · Zbl 0162.54302 · doi:10.1002/mana.19700440105 · doi.org
[42] Gideon Schwarz, Variations on vector measures, Pacific J. Math. 23 (1967), 373 – 375. · Zbl 0186.46502
[43] Z. Semadeni, Generalizations of Bohr’s theorem on Fourier series with independent characters, Studia Math. 23 (1963), 159 – 179. · Zbl 0197.40102
[44] G. C. Shephard, Decomposable convex polyhedra, Mathematika 10 (1963), 89 – 95. · Zbl 0121.39002 · doi:10.1112/S0025579300003995 · doi.org
[45] G. C. Shephard, Approximation problems for convex polyhedra, Mathematika 11 (1964), 9 – 18. · Zbl 0124.37801 · doi:10.1112/S0025579300003430 · doi.org
[46] G. C. Shephard, Polytopes with centrally symmetric faces, Canad. J. Math. 19 (1967), 1206 – 1213. · Zbl 0171.43101 · doi:10.4153/CJM-1967-109-3 · doi.org
[47] Gustave Choquet, Mesures coniques, affines et cylindriques, Symposia Mathematica, Vol. II (INDAM, Rome, 1968) Academic Press, London, 1969, pp. 145 – 182 (French). · Zbl 0176.44403
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.