Karoubi, M. Algèbres de Clifford et K-théorie. (French) Zbl 0194.24101 Ann. Sci. Éc. Norm. Supér. (4) 1, No. 2, 161-270 (1968). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 5 ReviewsCited in 57 Documents Keywords:topology PDF BibTeX XML Cite \textit{M. Karoubi}, Ann. Sci. Éc. Norm. Supér. (4) 1, No. 2, 161--270 (1968; Zbl 0194.24101) Full Text: DOI Numdam EuDML OpenURL References: [1] J. F. ADAMS , Vector fields on spheres (Ann. Math., vol. 75, 1962 , p. 603-632). MR 25 #2614 | Zbl 0112.38102 · Zbl 0112.38102 [2] D. W. ANDERSON , Thèse (non publiée). [3] M. F. ATIYAH , K-theory , Notes par D. W. ANDERSON, Harvard, 1964 . [4] M. F. ATIYAH , K-theory and reality . Zbl 0146.19101 · Zbl 0146.19101 [5] M. F. ATIYAH et R. BOTT , On the periodicity theorem for complex vector bundles (Acta Math., vol. 112, 1964 , p. 229-247). MR 31 #2727 | Zbl 0131.38201 · Zbl 0131.38201 [6] M. F. ATIYAH , R. BOTT et A. SHAPIRO , Clifford modules (Topology, vol. 3, 1964 , p. 3-38). MR 29 #5250 | Zbl 0146.19001 · Zbl 0146.19001 [7] M. F. ATIYAH et F. HIRZEBRUCH , Vector bundles and homogeneous spaces (Proc. Symposium in Pure Math., vol. 3, American Mathematical Society, 1961 ). MR 25 #2617 | Zbl 0108.17705 · Zbl 0108.17705 [8] M. F. ATIYAH et G. B. SEGAL , Equivariant K-theory (Lecture notes), Oxford, 1965 . [9] H. BASS , K-theory and stable algebra , Publ. math. I. H. E. S., n^\circ 22, 1964 , p. 5-60. Numdam | MR 30 #4805 | Zbl 0248.18025 · Zbl 0248.18025 [10] N. BOURBAKI , Algèbre, livre II, chap. 9 : Formes sesquilinéaires et formes quadratiques , Actualités Sc. Ind., n^\circ 1272. Zbl 0102.25503 · Zbl 0102.25503 [11] H. CARTAN et L. SCHWARTZ , Le théorème d’Atiyah-Singer , Séminaire E. N. S., 1963 - 1964 , exposés 3 et 15, Paris, 1964 . Numdam [12] A. DOUADY , Démonstration élémentaire d’un théorème de périodicité de Bott , Séminaire Bourbaki, t. 16, 1963 - 1964 , n^\circ 259. Numdam | Zbl 0136.21002 · Zbl 0136.21002 [13] S. EILENBERG et N. STEENROD , Foundations of algebraic topology , Princeton University Press, 1952 . MR 14,398b | Zbl 0047.41402 · Zbl 0047.41402 [14] P. GABRIEL , Des catégories abéliennes (Bull. Soc. math. France, t. 90, 1962 , p. 323-448). Numdam | MR 38 #1144 | Zbl 0201.35602 · Zbl 0201.35602 [15] P. S. GREEN , A cohomology theory based upon self-conjugacies of complex vector bundles (Bull. Amer. Math. Soc., vol. 70, 1964 , p. 522). Article | MR 29 #1644 | Zbl 0129.39401 · Zbl 0129.39401 [16] E. HILLE et R. S. PHILIPS , Functional analysis and semi-groups , American Mathematical Society Colloquium Publications, vol. XXXI, 1957 . Zbl 0078.10004 · Zbl 0078.10004 [17] M. KAROUBI , Fondements de la K-theorie (Notes de séminaire), Faculté des Sciences, Département de mathématique, Alger, 1966 . [18] M. KAROUBI , Cohomologie des catégories de Banach (C. R. Acad. Sc., t. 263, série A, 1966 , p. 275-278, 341-344 et 357-360). MR 34 #4327 | Zbl 0172.48503 · Zbl 0172.48503 [19] E. R. LORCH , Spectral theory , Oxford University Press, 1962 . MR 25 #427 | Zbl 0105.09204 · Zbl 0105.09204 [20] E. MICHAEL , Convex structures and continuous selections (Canad. J. Math., vol. 11, 1959 , p. 571). MR 22 #230 | Zbl 0093.36603 · Zbl 0093.36603 [21] J. MILNOR , Axiomatic homology theory (Pac. J. Math., vol. 12, 1962 , p. 337-341). Article | MR 28 #2544 | Zbl 0114.39604 · Zbl 0114.39604 [22] G. D. MOSTOW , Cohomology of topological groups and solvmanifolds (Ann. Math., vol. 73, 1961 , p. 20-48). MR 23 #A2484 | Zbl 0103.26501 · Zbl 0103.26501 [23] W. SHIH , Une remarque sur les classes de Thom (C. R. Acad. Sc., t. 260, 1965 , p. 6259-6262). MR 31 #5217 | Zbl 0161.42803 · Zbl 0161.42803 [24] C. T. C. WALL , On the exactness of interlocking sequences (L’enseignement mathématique, t. 12, 1966 , p. 95-100). MR 34 #6759 | Zbl 0151.31205 · Zbl 0151.31205 [25] R. WOOD , Banach algebras and Bott periodicity (Topology, vol. 4, 1966 , p. 371-389). MR 32 #3062 | Zbl 0163.36702 · Zbl 0163.36702 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.