×

zbMATH — the first resource for mathematics

Sur une question de J. Dieudonné. (French) Zbl 0194.43402

PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] BOURBAKI (N.) . - Espaces vectoriels topologiques . chap. 1-2, 3-5. - Paris, Hermann, 1953 - 1955 (Act. scient. et ind., 1189 et 1229 ; Bourbaki, 15 et 18).
[2] BUCHWALTER (H.) . - Espaces vectoriels bornologiques , Publications du Département Sc. Mathématiques de la Faculté des Sciences de Lyon, t. 2, 1965 , fasc. 1, p. 2-53. MR 32 #6183 | Zbl 0137.09303 · Zbl 0137.09303
[3] BRUDOVSKI\? (B. S.) . - Countability conditions in locally convex spaces , Soviet Math., t. 4, 1963 , p. 1472-1474. Zbl 0196.42502 · Zbl 0196.42502
[4] DIEUDONNÉ (J.) . - Denumerability conditions in convex vector spaces , Proc. amer. math. Soc., t. 8, 1957 , p. 367-372. MR 18,746d | Zbl 0077.30704 · Zbl 0077.30704 · doi:10.2307/2033746
[5] FUNAKOSI (S.) . - On nuclear spaces with fundamental system of bounded sets , II. Proc. Japan Acad., t. 44, 1968 , p. 807-810. Article | MR 39 #744 | Zbl 0172.39601 · Zbl 0172.39601 · doi:10.3792/pja/1195521213 · minidml.mathdoc.fr
[6] GARLING (D. J. H.) . - Locally convex spaces with denumerable systems of weakly compact sets , Proc. Cambr. phil. Soc., t. 60, 1964 , p. 813-815. MR 29 #3856 | Zbl 0134.31601 · Zbl 0134.31601
[7] GROTHENDIECK (A.) . - Sur les espaces (F) et (DF) , Summa Bras, Math., t. 3, 1952 - 1956 , p. 57-123. MR 17,765b | Zbl 0058.09803 · Zbl 0058.09803
[8] HOGBE-NLEND (H.) . - Complétion, tenseurs et nucléarité en bornologie , Thèse Sc. math. Bordeaux, 1969 ; à paraître J. Math. pures et appl. Zbl 0199.18001 · Zbl 0199.18001
[9] MAHOWALD (M.) and GOULD (G.) . - Quasi-barreled locally convex spaces , Proc. Amer. math. Soc. t. 11, 1960 , p. 811-816. MR 23 #A499 | Zbl 0097.08904 · Zbl 0097.08904 · doi:10.2307/2034566
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.