×

zbMATH — the first resource for mathematics

Higher products. (English) Zbl 0194.55201

Keywords:
topology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hillel H. Gershenson, Higher composition products, J. Math. Kyoto Univ. 5 (1965), 1 – 37. · Zbl 0152.21802
[2] K. A. Hardie, Derived homotopy constructions, J. London Math. Soc. 35 (1960), 465 – 480. · Zbl 0096.37505 · doi:10.1112/jlms/s1-35.4.452 · doi.org
[3] David Kraines, Massey higher products, Trans. Amer. Math. Soc. 124 (1966), 431 – 449. · Zbl 0146.19201
[4] W. S. Massey, Some higher order cohomology operations, Symposium internacional de topología algebraica International symposium on algebraic topology, Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958, pp. 145 – 154. · Zbl 0123.16103
[5] Gerald J. Porter, Higher-order Whitehead products, Topology 3 (1965), 123 – 135. · Zbl 0149.20204 · doi:10.1016/0040-9383(65)90039-X · doi.org
[6] G. J. Porter, Spaces with vanishing Whitehead products, Quart. J. Math. Oxford Ser. (2) 16 (1965), 77 – 84. · Zbl 0151.31601 · doi:10.1093/qmath/16.1.77 · doi.org
[7] E. Spanier, Higher order operations, Trans. Amer. Math. Soc. 109 (1963), 509 – 539. · Zbl 0119.18403
[8] James Dillon Stasheff, Homotopy associativity of \?-spaces. I, II, Trans. Amer. Math. Soc. 108 (1963), 275-292; ibid. 108 (1963), 293 – 312. · Zbl 0114.39402
[9] Hirosi Toda, Generalized Whitehead products and homotopy groups of spheres, J. Inst. Polytech. Osaka City Univ. Ser. A. Math. 3 (1952), 43 – 82. · Zbl 0049.12903
[10] F. D. Williams, A characterization of spaces with vanishing generalized higher Whitehead products, Bull. Amer. Math. Soc. 74 (1968), 497 – 499. · Zbl 0157.30204
[11] Joel M. Cohen, The decomposition of stable homotopy, Ann. of Math. (2) 87 (1968), 305 – 320. · Zbl 0162.55102 · doi:10.2307/1970586 · doi.org
[12] J. Peter May, Matric Massey products, J. Algebra 12 (1969), 533 – 568. · Zbl 0192.34302 · doi:10.1016/0021-8693(69)90027-1 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.