×

Index theory for skew-adjoint Fredholm operators. (English) Zbl 0194.55503


Keywords:

topology

References:

[1] M. F. Atiyah, K-theory, Benjamin (1967).
[2] M. F. Atiyah, Algebraic Topology and Operators in Hilbert Space,Lectures in Modern Analysis and applications 1, Springer, 1969. · Zbl 0177.51701
[3] M. F. Atiyah, Bott Periodicity and the Index of Elliptic Operators,Oxford Quart. J., 74 (1968), 113–140. · Zbl 0159.53501 · doi:10.1093/qmath/19.1.113
[4] M. F. Atiyah, R. Bott andA. Shapiro, Clifford Modules,Topology, 3, Suppl. 1 (1964), 3–38. · Zbl 0146.19001 · doi:10.1016/0040-9383(64)90003-5
[5] R. G. Bartle andL. M. Graves, Mappings between Function Spaces,Trans. Amer. Math. Soc., 72 (1952), 400–413. · Zbl 0047.10901 · doi:10.1090/S0002-9947-1952-0047910-X
[6] R. Bott, Stable Homotopy of the Classical Groups,Ann. of Math., 70 (1959), 313–337. · Zbl 0129.15601 · doi:10.2307/1970106
[7] R. Brown,Elements of Modern Topology, McGraw-Hill (1968). · Zbl 0159.52201
[8] J. Dixmier,Les C*-algèbres et leurs représentations, Gauthier-Villars (1964). · Zbl 0152.32902
[9] M. Karoubi (to appear).
[10] N. Kuiper, Contractibility of the Unitary Group in Hilbert Space,Topology, 3 (1964), 19–30. · Zbl 0129.38901 · doi:10.1016/0040-9383(65)90067-4
[11] J. Milnor,Morse Theory, Ann. o Math. Studies, no. 51, Princeton (1963).
[12] J. Milnor, On Spaces having Homotopy Type of a CW-complex,Trans. Amer. Math. Soc., 90 (1957), 272–280. · Zbl 0084.39002
[13] G. B. Segal (to appear).
[14] N. Steenrod,The Topology of Fibre-Bundles, Princeton (1951). · Zbl 0054.07103
[15] R. Wood, Banach Algebras and Bott Periodicity,Topology 4 (1966), 371–389. · Zbl 0163.36702 · doi:10.1016/0040-9383(66)90035-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.