×

zbMATH — the first resource for mathematics

An infinite-dimensional Schoenflies theorem. (English) Zbl 0194.55603

Keywords:
topology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. D. Anderson, Topological properties of the Hilbert cube and the infinite product of open intervals, Trans. Amer. Math. Soc. 126 (1967), 200 – 216. · Zbl 0152.12601
[2] R. D. Anderson and R. H. Bing, A complete elementary proof that Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 74 (1968), 771 – 792. · Zbl 0189.12402
[3] Marston Morse, A reduction of the Schoenflies extension problem, Bull. Amer. Math. Soc. 66 (1960), 113 – 115. , https://doi.org/10.1090/S0002-9904-1960-10420-X Morton Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960), 74 – 76.
[4] M. L. Curtis and E. C. Zeeman, On the polyhedral Schoenflies theorem, Proc. Amer. Math. Soc. 11 (1960), 888 – 889. · Zbl 0096.37903
[5] Victor L. Klee Jr., Convex bodies and periodic homeomorphisms in Hilbert space, Trans. Amer. Math. Soc. 74 (1953), 10 – 43. · Zbl 0050.33202
[6] V. L. Klee Jr., A note on topological properties of normed linear spaces, Proc. Amer. Math. Soc. 7 (1956), 673 – 674. · Zbl 0070.11103
[7] Barry Mazur, On embeddings of spheres, Bull. Amer. Math. Soc. 65 (1959), 59 – 65. · Zbl 0086.37004
[8] R. A. McCoy, Cells and cellularity in infinite-dimensional normed linear spaces, Trans. Amer. Math. Soc. 176 (1973), 401 – 410. · Zbl 0261.57004
[9] Marston Morse, A reduction of the Schoenflies extension problem, Bull. Amer. Math. Soc. 66 (1960), 113 – 115. , https://doi.org/10.1090/S0002-9904-1960-10420-X Morton Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960), 74 – 76.
[10] M. H. A. Newman, On the division of Euclidean \?-space by topological (\?-1)-spheres., Proc. Roy. Soc. London Ser. A 257 (1960), 1 – 12. · Zbl 0094.17601
[11] P. M. Rice, The Hauptvermutung and the polyhedral Schoenflies theorem, Bull. Amer. Math. Soc. 71 (1965), 521 – 522. · Zbl 0136.44601
[12] Ronald H. Rosen, Stellar neighborhoods in polyhedral manifolds, Proc. Amer. Math. Soc. 14 (1963), 401 – 406. · Zbl 0112.38503
[13] John R. Stallings, Polyhedral homotopy-spheres, Bull. Amer. Math. Soc. 66 (1960), 485 – 488. · Zbl 0111.18901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.