×

An operational approach to quantum probability. (English) Zbl 0194.58304


Keywords:

quantum theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Kolmogorov, A. N.: Foundations of probability theory. Trans. by N. Morrison. New York: Chelsea Publ. Comp. 1950. · Zbl 0074.12202
[2] Mackey, G. W.: Mathematical foundations of quantum mechanics. New York: W. A. Benjamin Inc. 1963. · Zbl 0114.44002
[3] Urbanik, K.: Joint probability distribution of observables in quantum mechanics. Studia Math.21, 117–133 (1961). · Zbl 0099.22404
[4] Varadarajan, V. S.: Probability in physics and a theorem on simultaneous observability. Commun. Pure Appl. Math.15, 189–217 (1962). · Zbl 0109.44705 · doi:10.1002/cpa.3160150207
[5] Umegaki, H.: Conditional expectation in an operator algebra. Tohôku Math. J.6, 177–181 (1954). · Zbl 0058.10503 · doi:10.2748/tmj/1178245177
[6] Nakamura, M., Turumaru, T.: Expectations in an operator algebra. Tohôku Math. J.6, 182–188 (1954). · Zbl 0058.10504 · doi:10.2748/tmj/1178245178
[7] von Neumann, J.: Mathematical foundations of quantum mechanics. Trans. by R. T. Beyer. Princeton: Unive. Press 1955. · Zbl 0064.21503
[8] Schwinger, J.: The algebra of microscopic measurement. Proc. Nat. Acad. Sci. U.S.45, 1542–1554 (1959) and46, 257–265 (1960) and46, 570–579 (1960). · Zbl 0122.22303 · doi:10.1073/pnas.45.10.1542
[9] Haag, R., Kastler, D.: An algebraic approach to quantum field theory. J. Math. Phys.5, 848–861 (1964). · Zbl 0139.46003 · doi:10.1063/1.1704187
[10] Luders, G.: Über die Zustandsänderung durch den Meßprozeß. Ann. Physik (6)8, 322–328 (1951). · Zbl 0043.21003
[11] Goldberger, M. L., Watson, K. M.: Measurement of time correlations for quantum-mechanical systems. Phys. Rev. (2)134, B919–928 (1964). · Zbl 0127.43702 · doi:10.1103/PhysRev.134.B919
[12] Furry, W. H.: Some aspects of the quantum theory of measurement pp. 1–64. Lectures in Theoretical Physics vol. VIIIa. Boulder: University of Colorado Press 1966
[13] Nakamura, M. Umegaki, H.: On von Neumann’s theory of measurement in quantum statistics. Math. Japon7, 151–157 (1962). · Zbl 0113.09803
[14] Davies, E. B.: On the repeated measurement of continuous observables in quantum mechanics. J. Funct. Anal. (to appear).
[15] —- Quantum stochastic processes. Commun. Math. Phys.15, 277–304 (1969). · Zbl 0184.54102 · doi:10.1007/BF01645529
[16] Schatten, R.: Norm ideals of completely continuous operators. Erg. der Math. Berlin-Göttingen-Heidelberg: Springer: 1960. · Zbl 0090.09402
[17] Ellis, A. J.: The duality of partially ordered normed linear spaces. J. London Math. Soc.39, 730–744 (1964). · Zbl 0131.11302 · doi:10.1112/jlms/s1-39.1.730
[18] Namioka, I.: Partially ordered linear topological spaces. Mem. Am. Math. Soc.24 (1957). · Zbl 0105.08901
[19] Mackey, G. W.: Borel structure in groups and their duals. Trans. Am. Math. Soc.85, 134–165 (1957). · Zbl 0082.11201 · doi:10.1090/S0002-9947-1957-0089999-2
[20] Moy, S.-T. C.: Characterisations of conditional expectations as a transformation on function spaces. Pacific J. Math.4, 47–64 (1954). · Zbl 0055.12503
[21] Dixmier, J.: Les algèbres d’operateurs dans l’espace hilbertien (algebres de von Neumann). Cahiers scientifiques 25. 2nd ed. Paris: Gauthiers-Villars 1969. · Zbl 0175.43801
[22] Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math.37, 823–843 (1936). · JFM 62.1061.04 · doi:10.2307/1968621
[23] von Neumann, J.: Collected works, Vol. IV. No. 17. Edited by A. H. Taub. Oxford: Pergamon Press 1962. · Zbl 0188.00103
[24] Pool, J. C. T.: Baer*-semigroups and the logic of quantum mechanics. Commun. Math. Phys.9, 118–141 (1968). · Zbl 0159.59602 · doi:10.1007/BF01645838
[25] Kakutani, S.: Concrete representation of abstract (M)-spaces. Ann. Math.42, 994–1024 (1941). · Zbl 0060.26604 · doi:10.2307/1968778
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.