×

zbMATH — the first resource for mathematics

A decomposition theorem. (English) Zbl 0195.14302
A decomposition theorem is proved which leads to a new straightforward proof of the Radon-Nikodym theorem for modular Stonian measures independent of the theory of Kaplansky-Hilbert modules.
Reviewer: J. D. M. Wright

PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Floyd, E. E.: Boolean algebras with pathological order properties. Pacific J. Math5, 687-689 (1955). · Zbl 0065.26603
[2] Kaplansky, I.: Modules over operator algebras. Amer J. Math.75, 839-858 (1953). · Zbl 0051.09101
[3] Maharam, D.: The representation of abstract integrals. Trans. Amer. Math. Soc.75, 154-184 (1953). · Zbl 0051.29203
[4] ?: On kernel representation of linear operators. Trans. Amer. Math. Soc.79, 229-255 (1955). · Zbl 0066.29701
[5] Royden, H. L.: Real analysis. New York: Macmillan 1963. · Zbl 0121.05501
[6] Stone, M. H.: Boundedness properties in function lattices Canadian J. Math.1, 176-186 (1949). · Zbl 0032.16901
[7] Wright, J. D. Maitland: Stone algebra valued measures and integrals. Proc. London Math. Soc.19, 107-122 (1969). · Zbl 0186.46504
[8] ?: A Radon-Nikodym theorem for stone algebra valued measures. Trans. Amer. Math. Soc.139, 75-94 (1969). · Zbl 0182.46902
[9] ?: Applications to averaging operators of the theory of Stone algebra valued modular measures. Quart. J. Math. (Oxford)19, 321-331 (1968). · Zbl 0159.42103
[10] ?: Martingale convergence theorems for sequences of Stone algebras. Proc. Glasgow Math. Assoc.10, 77-83 (1969). · Zbl 0179.18202
[11] ?: A lifting theorem for Boolean ?-algebras. Math. Z.112, 326-334 (1969). · Zbl 0188.45402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.