The potential method for conditional maxima in the locally compact metric spaces. (English) Zbl 0195.46304

Full Text: DOI EuDML


[1] Bui-Trong-Lieu, Huard, P.: La methode des centres dans un espace topologique. Numerische Math.8, (1) (1966). · Zbl 0171.40802
[2] Fiacco, A. V., McCormick, G. P.: The sequential unconstrained minimization technique for nonlinear programming. Management Science10, (2) (1964). · Zbl 0193.18805
[3] - - The slacked unconstrained minimization technique for convex programming. Congress ES/TIMS. Warsaw 1966.
[4] Frisch, R. A. K.: Principals of linear programming with particular reference to double gradient form of the logarithmic potential method. Memorandum of the University of Economics, Oslo 1954.
[5] - The logarithmic potential method of convex programming. Memorandum of the University Institute of Economics, Oslo 1955
[6] Huard, P.: Resolution de programmes mathématiques a contraintes non linéaires par le methode des centres. Note EDF HR S. 690 du 6. 5. 1964.
[7] Parisot, G. R.: Les programmes logarithmiques – application aux calculs des programmes convexes, specialment linéaires. Inter. Conf. of Information Processing. Paris: Unesco 1959.
[8] Pietrzykowski, T.: Logarithmic method for finding conditional maxima. Prace ZAM A 10, Warsaw, 1960. · Zbl 0138.09603
[9] —- Application of the steepest ascent method to concave programming. Proceedings of the IFIP Congress, Munich 62. Amsterdam: North Holland Comp. 1962.
[10] —- On a method of approximative finding conditional maxima. Algorytmy, V. 1, No. 1, Prace Instytutu Maszyn Matematycznych PAN, Warsaw, 1962.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.