On parastatistics. (English) Zbl 0195.55904


quantum theory
Full Text: DOI


[1] Green, H. S.: A generalized method of field quantization. Phys. Rev.90, 270 (1953). · Zbl 0051.21001 · doi:10.1103/PhysRev.90.270
[2] Volkov, D.:S-matrix in the generalized quantization method. Soviet Phys. JETP11, 375 (1960). · Zbl 0126.44803
[3] Greenberg, O. W., Messiah, A. M. L.: Selection rules for parafields and the absence of para particles in nature. Phys. Rev. B138, 1155 (1965).
[4] —- Parafield theory. In: Proceedings of Conference on the Mathematical Theory of Elementary Particles. Edited by R. Goodman and I. Segal. London-New York: MIT-Press 1966. · Zbl 0171.24301
[5] Landshoff, P. V., Stapp, Henry P.: Parastatistics and a unified theory of identical particles. Ann. Phys.45, 72 (1967). · doi:10.1016/0003-4916(67)90317-X
[6] Doplicher, S., Haag, R., Roberts, J. E.: Fields, observables and gauge transformations I. Commun. Math. Phys.13, 1 (1969). · Zbl 0175.24704 · doi:10.1007/BF01645267
[7] Segal, I. E.: Tensor algebras over Hilbert spaces II. Ann. Math.63, 160 (1956). · Zbl 0073.09403 · doi:10.2307/1969994
[8] Guichardet, A.: Produits tensoriels infinis et répresentations des relations d’anticommutation. Ann. Sci. Ecole Norm. Super.83, 1 (1966). · Zbl 0154.38905
[9] Doplicher, S., Kastler, D., Robinson, D. W.: Covariance algebras in field theories and statistical mechanics. Commun. Math. Phys.3, 1 (1966). · Zbl 0152.23803 · doi:10.1007/BF01645459
[10] Borchers, H. J.: Local rings and the connection of spin and statistics. Commun. Math. Phys.1, 291 (1965). · Zbl 0138.45202
[11] Doplicher, S., Haag, R., Roberts, J. E.: Fields, observables and gauge transformation II. Commun. Math. Phys.15, 173 (1969). · Zbl 0186.58205 · doi:10.1007/BF01645674
[12] Yang, C. N.: Concept of off-diagonal long-range order and the quantum phases of liquid He and of superconductors. Rev. Mod. Phys.34, 694 (1962). · doi:10.1103/RevModPhys.34.694
[13] Ohnuki, Y., Kamefuchi, S.: Some general properties of para-Fermi field theory. Phys. Rev.170, 1279 (1968). · Zbl 0189.27304 · doi:10.1103/PhysRev.170.1279
[14] —- —- Wavefunctions of identical particles. Ann. Phys.51, 337 (1969). · doi:10.1016/0003-4916(69)90217-6
[15] Weyl, H.: The classical groups. Princeton University Press, Princeton 1946. · Zbl 1024.20502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.