Segal, I. Notes towards the construction of nonlinear relativistic quantum fields. II: The basic nonlinear functions in general space-times.-III: Properties of the \(C^*\)-dynamics for a certain class of interactions. (English) Zbl 0196.28005 Bull. Am. Math. Soc. 75, 1383-1389, 1390-1395 (1969). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 20 Documents Keywords:quantum theory PDF BibTeX XML Cite \textit{I. Segal}, Bull. Am. Math. Soc. 75, 1383--1389, 1390--1395 (1969; Zbl 0196.28005) Full Text: DOI OpenURL References: [1] Irving Segal, Notes toward the construction of nonlinear relativistic quantum fields. I. The Hamiltonian in two space-time dimensions as the generator of a \?*-automorphism group, Proc. Nat. Acad. Sci. U.S.A. 57 (1967), 1178 – 1183. · Zbl 0162.57801 [2] Irving Segal, Nonlinear functions of weak processes. I, J. Functional Analysis 4 (1969), 404 – 456. · Zbl 0187.39201 [3] I. E. Segal, Foundations of the theory of dynamical systems of infinitely many degrees of freedom. I, Mat.-Fys. Medd. Danske Vid. Selsk. 31 (1959), no. 12, 39 pp. (1959). · Zbl 0085.21806 [4] Irving Segal, Nonlinear functions of weak processes. I, J. Functional Analysis 4 (1969), 404 – 456. · Zbl 0187.39201 [5] Irving Segal, Nonlinear functions of weak processes. I, J. Functional Analysis 4 (1969), 404 – 456. · Zbl 0187.39201 [6] I. Segal, Local non-commutative analysis, Proc. Sympos. in Honor of S. Bochner (Princeton, 1968) (to appear). [7] G. C. Wick, The evaluation of the collision matrix, Physical Rev. (2) 80 (1950), 268 – 272. · Zbl 0040.13006 [8] Irving Segal, Interprétation et solution d’équations non linéaires quantifiées, C. R. Acad. Sci. Paris 259 (1964), 301 – 303. [9] L. Gårding and A. S. Wightman, Fields as operator-valued distributions in relativistic quantum field theory, Ark. Fys. 28 (1964), 129. · Zbl 0138.45401 [10] I. E. Segal, Hypermaximality of certain operators on Lie groups, Proc. Amer. Math. Soc. 3 (1952), 13 – 15. · Zbl 0049.35704 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.