Bauer, H. Kennzeichnung kompakter Simplexe mit abgeschlossener Extremalpunktmenge. (German) Zbl 0196.42202 Arch. Math. 14, 415-421 (1963). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 13 Documents Keywords:partial differential equations × Cite Format Result Cite Review PDF Full Text: DOI References: [1] H. Bauer, ?ilovscher Rand und Dirichletsches Problem. Ann. Inst. Fourier11, 89-136 (1961). · Zbl 0098.06902 [2] H. Bauer, Minimalstellen von Funktionen und Extremalpunkte. Arch. Math.9, 389-393 (1958). · Zbl 0082.32601 · doi:10.1007/BF01898615 [3] G. Choquet, Remarques ? propos de la d?monstration d’unicit? de P.-A. Meyer. S?minaireBrelot-Choquet-Deny (Th?orie du Potentiel), 6e ann?e, expos? 8, 13 p. (1962). (Institut H. Poincar?, Paris). [4] G. Choquet etP.-A. Meyer, Existence et unicit? des repr?sentations int?grales dans les convexes compacts quelconques. Ann. Inst. Fourier13, 139-154 (1963). · Zbl 0122.34602 [5] D. A. Edwards, On the representation of certain functionals by measures on the Choquet boundary. Ann. Inst. Fourier13, 111-121 (1963). · Zbl 0112.34302 [6] V. L. Klee jr., Extremal structure of convex sets II. Math. Z.69 90-104 (1958). · Zbl 0079.12502 · doi:10.1007/BF01187394 [7] P.-A. Meyer, Sur les d?monstrations nouvelles du th?or?me de Choquet. S?minaire Brelot Choquet-Deny (Th?orie du Potentiel), 6e ann?e, expos? 7, 9 p. (1962). (Institut H. Poincar?, Paris). [8] G. Mokobodzki, Quelques propri?t?s des fonctions num?riques convexes (s.c.i. ou s.c.s.) sur un ensemble convexe compact. S?minaireBrelot-Choqttet-Deny (Th?orie du Potentiel), 6e ann?e, expos? 9, 3 p. (1962). (Institut H. Poincar?, Paris). This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.