Mathematical programming applied to linear approximation of functions. (Czech) Zbl 0196.48602

Full Text: EuDML


[1] Arrow K. J., Hurwicz L., Uzawa H.: Studies in Linear and Nonlinear Programming. Stanford University Press, Stanford, Calif. 1958. · Zbl 0091.16002
[2] Arrow K. J., Hurwicz L., Uzawa H.: Constraint Qualifications in Maximization Problems. Naval Res. Log. Quarterly, Vol. 8, 1961. · Zbl 0129.34103
[3] Durbin J.: Errors in Variables. Revue de l’Institut international de statistique, Vol. 22, 1954. · Zbl 0058.13202
[4] Karlin S.: Mathematical Methods and Theory in Games, Programming and Economics. Vol. I. Addison-Wesley Publ. Company, Inc. 1959. · Zbl 0139.12704
[5] Kelley J. E.: An Application of linear Programming to Curve Fitting. Journal of the Society for Indust. and Appl. Mathematics. Vol. 6, 1958. · Zbl 0084.15804
[6] Lindley D. V.: Regression Lines and the Linear Functional Relationship. Journal of the Royal Statistical Society, Supp. 9, 1947. · Zbl 0031.17202
[7] Madansky A.: The Fitting of Straight Lines when Both Variables are Subject to Error. Journal of the American Statistical Association, Vol. 54, 1959. · Zbl 0088.35804
[8] Manne A. S., Markowitz H. M.: On the Solution of Discrete Programming Problems. Econometrica, Vol. 25, 1957. · Zbl 0078.34005
[9] Rosen J. B.: The Gradient Projection Method for Nonlinear Programming. Part I. Linear Constraints. Jour. Soc. Industr. Appl. Mathem., Vol. 8, 1960. · Zbl 0099.36405
[10] Rosen J. B.: The Gradient Projection Method for Nonlinear Programming. Part II, Nonlinear Constraints. Jour. Soc. Industr. Appl. Mathem.., Vol. 9, 1961. · Zbl 0231.90048
[11] Wagner H. M.: Linear Programming Techniques for Regression Analysis. Jour. of the Amer. Stat. Association, Vol. 54, 1959. · Zbl 0088.35702
[12] Zoutendijk G.: Maximizing a Function in a Convex Region. Jour. of Royal Stat. Soc., Vol. 21, 1959. · Zbl 0091.16101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.