×

zbMATH — the first resource for mathematics

Distributed Maple: Parallel computer algebra in networked environments. (English) Zbl 1045.68167
Summary: We describe the design and use of Distributed Maple, an environment for executing parallel computer algebra programs on multiprocessors and heterogeneous clusters. The system embeds kernels of the computer algebra system Maple as computational engines into a networked coordination layer implemented in the programming language Java. On the basis of a comparatively high-level programming model, one may write parallel Maple programs that show good speedups in medium-scaled environments. We report on the use of the system for the parallelization of various functions of the algebraic geometry library CASA and demonstrate how design decisions affect the dynamic behaviour and performance of a parallel application. Numerous experimental results allow comparison of Distributed Maple with other systems for parallel computer algebra.

MSC:
68W30 Symbolic computation and algebraic computation
Keywords:
Java
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bernardin, L., Maple on a massively parallel, distributed memory machine, (), 217-222 · Zbl 0923.68076
[2] Bertoli, P., Hong, H., Neubacher, A., Schreiner, W., Stahl, V., April 1994. The C++ Interface to the STURM Distributed Multiprocessor Kernel. Technical Report 94-32, RISC-Linz, Johannes Kepler University, Linz, Austria
[3] Bubeck, T.; Hiller, M.; Küchlin, W.; Rosenstiel, W., Distributed symbolic computation with DTS, (), 231-248
[4] Chan, K.C.; Diaz, A.; Kaltofen, E., A distributed approach to problem solving in Maple, (), 13-21
[5] Char, B., Progress report on a system for general-purpose parallel symbolic algebraic computation, (), 96-103
[6] Char, B.; Johnson, J., Some experiments with parallel bignum arithmetic, (), 94-103
[7] Collins, G.E., The calculation of multivariate polynomial resultants, J. ACM, 18, 515-532, (1971) · Zbl 0226.65042
[8] Collins, G.E.; Akritas, A.G., Polynomial real root isolation using descartes’ rule of signs, (), 272-275
[9] Collins, G.E., Johnson, J.R., Küchlin, W., May 1990. Parallel real root isolation using the coefficient sign variation method. In: Zippel, R.E. (Ed.), Computer Algebra and Parallelism, Lecture Notes in Computer Science, Ithaca, USA. Springer-Verlag, Berlin, pp. 71-81
[10] Cooperman, G., GAP/MPI: writing parallel programs in GAP easilytechnical report, (1998), College of Computer Science, Northeastern University Boston, MA
[11] Decker, T.; Krandick, W., Parallel real root isolation using the Descartes method, (), 261-268
[12] ()
[13] Diaz, A.; Kaltofen, E., Foxbox: a system for manipulating symbolic objects in black box representation, () · Zbl 0918.68049
[14] Diaz, A.; Kaltofen, E.; Schmitz, K.; Valente, T., DSC—a system for distributed computation, (), 324-333 · Zbl 0925.68235
[15] Gautier, T.; Hong, H.; Roch, J.-L.; Schreiner, W., Parallel implementation, (), Chapter 2.16 (to appear)
[16] Gautier, T.; Roch, J.-L., PAC++ system and parallel algebraic numbers computations, (), 145-153
[17] ()
[18] Hong, H., Parallelization of quantifier elimination on workstation network, (), 170-179 · Zbl 0801.68099
[19] ()
[20] Hong, H.; Loidl, H.W., Parallel computation of modular multivariate polynomial resultants on a shared memory machine, (), 325-336
[21] Hong, H.; Neubacher, A.; Schreiner, W., The design of the SACLIB/PACLIB kernels, J. symb. comput., 19, 111-132, (1995) · Zbl 0939.68961
[22] Küchlin, W., PARSAC-2: A parallel SAC-2 based on threads, (), 341-353 · Zbl 0755.68081
[23] Loidl, H.W.; Trinder, P.W.; Hammond, K.; Junaidu, S.B.; Morgan, R.G.; Jones, S.L.P., Engineering parallel symbolic programs in GPH, Concurrency—practice and experience, 11, 12, 701-751, (1999)
[24] Maple, W., Maple 6, 2001. Available from http://www.maplesoft.com
[25] Metzner, T.; Radimersky, M.; Sorgatz, A.; Wehmeier, S., User’s guide to macro parallelism in mupad 1.4.1, (1999), Teubner Stuttgart, Germany · Zbl 0917.68032
[26] Mittermaier, C., 2000. Parallel Algorithms in Constructive Algebraic Geometry. Master’s Thesis, Johannes Kepler University, Linz, Austria
[27] Mittermaier, C.; Schreiner, W.; Winkler, F., A parallel symbolic-numerical approach to algebraic curve plotting, (), 301-314 · Zbl 0976.65020
[28] Mnuk, M.; Winkler, F., CASA—A system for computer aided constructive algebraic geometry, (), 297-307
[29] Nam, T.Q., 1994. Extended Newton’s method for finding the roots of an arbitrary system of equations and its applications. In: IASTED’94, Twelvth International Conference on Applied Informatics, Annecey, France, 1994
[30] Pau, C., Schreiner, W., July 2000. Distributed Mathematica—User and Reference Manual. Technical Report 00-25, RISC-Linz, Johannes Kepler University, Linz, Austria
[31] Petcu, D., Pvmaple, a distributed approach to cooperative work of Maple processes, (), 216-224
[32] Roch, J.-L., Villard, G., 1997. Parallel computer algebra. Lecture Notes for a Tutorial, ISSAC’97, Hawaii, July 1997. Available from http://www-apache.imag.fr/ jlroch/ps/97-issac.ps.gz
[33] Schreiner, W., A para-functional programming interface for a parallel computer algebra package, J. symb. comput., 21, 4-6, 593-614, (1996) · Zbl 0863.68077
[34] Schreiner, W., May 1998. Distributed Maple—User and Reference Manual. Technical Report 98-05, RISC-Linz, Johannes Kepler University, Linz, Austria. Available from: http://www.risc.uni-linz.ac.at/software/distmaple
[35] Schreiner, W., Developing a distributed system for algebraic geometry, (), 137-146
[36] Schreiner, W., November 2000. Analyzing the Performance of Distributed Maple. Technical Report 00-32, RISC-Linz, Johannes Kepler University, Linz, Austria
[37] Schreiner, W., Manager-worker parallelism versus dataflow in a distributed computer algebra system, (), 329-343 · Zbl 0997.68674
[38] Schreiner, W.; Kusper, G.; Bosa, K., Fault tolerance for cluster computing based on functional tasks, (), 712-716 · Zbl 1005.68634
[39] Schreiner, W., Loidl, H.-W., November 2000. GHC-Maple Interface, Available from http://www.risc.uni-linz.ac.at/software/ghc-maple
[40] Schreiner, W.; Mittermaier, C.; Winkler, F., Analyzing algebraic curves by cluster computing, (), 175-184
[41] Schreiner, W.; Mittermaier, C.; Winkler, F., On solving a problem in algebraic geometry by cluster computing, (), 1196-1200
[42] Schreiner, W.; Mittermaier, C.; Winkler, F., Plotting algebraic space curves by cluster computing, (), 49-58 · Zbl 0981.65030
[43] Seitz, S., May 1990. Algebraic computation on a local net. In: Zippel, R.E. (Ed.), Computer Algebra and Parallelism, Lecture Notes in Computer Science, Ithaca, USA. Springer-Verlag, Berlin, pp. 19-31
[44] Sendra, R.J.; Winkler, F., Symbolic parametrization of curves, J. symb. comput., 12, 6, 607-631, (1990) · Zbl 0759.14044
[45] Siegl, K., Parallelizing algorithms for symbolic computation using ‖MAPLE‖, (), 179-186
[46] Wang, D., On the parallelization of characteristic-set-based algorithms, (), 338-349
[47] Zippel, R.E. (Ed.), May 1990. Computer Algebra and Parallelism, Lecture Notes in Computer Science, Ithaca, USA. Springer-Verlag, Berlin
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.