Stampfli, Joseph Gail The norm of a derivation. (English) Zbl 0197.10501 Pac. J. Math. 33, 737-747 (1970). Summary: In this paper, we determine the norm of the inner derivation \(\mathfrak Q_T\colon A \to TA - AT\) acting on the Banach algebra \(\mathfrak B(H)\) of all bounded linear operators on Hilbert space. More precisely, we show that \(\Vert\mathfrak Q_T\Vert = \inf\{2\,\Vert T - \lambad I\Vert : \lambda\] complex \(\}\). If \(T\) is normal, then \(\Vert\mathfrak Q_T\Vert can be specified in terms of the geometry of the spectrum of \(T\). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 11 ReviewsCited in 97 Documents MSC: 47-XX Operator theory 46-XX Functional analysis Keywords:norm; inner derivation; Banach algebra; bounded linear operators; Hilbert space PDF BibTeX XML Cite \textit{J. G. Stampfli}, Pac. J. Math. 33, 737--747 (1970; Zbl 0197.10501) Full Text: DOI OpenURL