×

zbMATH — the first resource for mathematics

A general method for the construction of interpolating or smoothing spline-functions. (English) Zbl 0197.13501

PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Ahlberg, J. H., andE. N. Nilson: Convergence properties of the spline fit. J. Soc. Ind. Math.11, 95–104 (1963). · Zbl 0196.48701 · doi:10.1137/0111007
[2] —-, andJ. L. Walsh: Fundamental properties of generalized splines. Proc. Nat. Acad. Sci. (USA)52, 1412–1419 (1964). · Zbl 0136.36204 · doi:10.1073/pnas.52.6.1412
[3] —- Orthogonality properties of spline functions. J. Math. Analysis and applications11, 321–337 (1965) · Zbl 0136.04801 · doi:10.1016/0022-247X(65)90089-2
[4] —-, andJ. L. Walsh: Convergence properties of generalized splines. Proc. Nat. Acad. Sci. (USA)54, 344–350 (1965). · Zbl 0136.36301 · doi:10.1073/pnas.54.2.344
[5] —-, andJ. L. Walsh Extremal, orthogonality and convergence properties of multidimensional splines. J. of Math. anal. and appl.12, 27–48 (1965). · Zbl 0136.04802 · doi:10.1016/0022-247X(65)90051-X
[6] – Best approximation and convergence properties of higher-order spline approximations. J. of Math. and Mech.14, No. 2, 231–244 (1965). · Zbl 0141.06801
[7] —- The approximation of linear functionals. J. SIAM, Num. Anal.3, No. 2, 173–182 (1966). · Zbl 0147.05102 · doi:10.1137/0703013
[8] Ahlin, A. C.: Computer algorithms and theorems for generalized spline interpolation. SIAM National Meeting, N.Y., June 7–9, 1965
[9] Atteia, M.: Generalisation de la définition et des propriétés des aspline-fonctions C. R. Acad. Sci. Paris260, 3550–3553 (1965). · Zbl 0163.37703
[10] —-: Fonctions-spline généralisées. C. R. Acad. Sci. Paris261, 2149–2152 (1965). · Zbl 0127.06601
[11] —-: Existence et détermination des fonctions spline à plusieurs variables. C. R. Acad. Sci. Paris262, 575–578 (1966). · Zbl 0168.35002
[12] – Théorie et applications des fonctions-spline en analyse numérique. Thèse, Grenoble (1966).
[13] – Sur les fonctions-spline généralisées. Sème Congrès de l’AFIRO, Lille 27 juin -1 er juillet 1966.
[14] Birkhoff, G., andH. L. Garabedian: Smooth surface interpolation. J. Math. and Physics39, 258–268 (1960). · Zbl 0161.12903
[15] —-, andC. De Boor: Error bounds for spline interpolation. J. of Math. and Mech.13, No. 5, 827–835 (Sept. 1964). · Zbl 0143.28503
[16] —-: Piecewise polynomial interpolation and approximation. Approximation of functions,H. L. Garabedian (ed.), pp. 164–190. Amsterdam: Elsevier 1965.
[17] Carasso, C.: Méthodes numériques pour l’obtention de fonctions-spline. Thèse de 3éme Cycle, Université de Grenoble, 28 mars 1966.
[18] – Construction numérique de fonctions-spline. Vème Congrès de l’AFIRO, Lille 27 juin- 1 er juillet 1966.
[19] —- Méthode générale de construction de fonctions-spline. Revue française d’informatique et de Recherche opérationnelle5, 119–127 (1967).
[20] Curry, H. B., andI. J. Schoenberg: On Polya frequency functions IV: The spline functions and their limits. Bull. Amer. Math. Soc.53, 1114 (1947)
[21] Boor, C. de: Bicubic spline interpolation. J. Math. Phys.41, 212–218 (1962). · Zbl 0108.27103
[22] —-: Best approximation properties of spline functions of odd degree. J. Math. Mech.12, 747–750 (1963). · Zbl 0116.27601
[23] —-, andR. E. Lynch: On splines and their minimum properties. J. Math. Mech.15, 953–969 (1966). · Zbl 0185.20501
[24] Golomb, M., andH. Weinberger: Optimal approximation and error bounds. In ”On numerical Approximation”,R. E. Langer (ed.), pp. 117–190. Madison: The Univ. of Wisconsin Press 1959.
[25] – Lectures on theory of approximation. Argonne National Laboratory. Appl. Math. Division (1962).
[26] Greville, T. N. E.: The general theory of osculatory interpolation. Trans. of the Acturial Society of America45, 202–265 (1944).
[27] —-: Subtabulaçaô por minimas quadrados de diferenças finitas. Bol. Inst. Brasil. Atuaria2, 7–34 (1946).
[28] —-, andH. Vaughan: Polynomial interpolation in terms of symbolic operators. Trans. Soc. Actuar.6, 413–476 (1954).
[29] —-: Interpolation by generalized spline functions. SIAM Review6, 483 (1964). · Zbl 0147.32101
[30] –: Numerical procedures for interpolation by spline functions. Math. Res. Center, United States Army, The Univ. of Wisconsin, Contract No. DA-11-022-ORD-2059. MRC Techn. Summary report, 450, january 1964. J. SIAM, Num. Anal. 1, 53–68 (1964).
[31] –, andI. J. Schoenberg: Smoothing by generalized spline-functions.
[32] Johnson, R. S.: On monosplines of least deviation. Trans. Amer. Math. Soc.96, 458–477 (1960). · Zbl 0094.03903 · doi:10.1090/S0002-9947-1960-0122938-4
[33] Joly, J. L.: Utilisation des Fonctions-spline pour le lissage. Vème Congrès de l’AFIRO, Lille, 27 juin-ler juillet 1966.
[34] – Convergence des fonctions-spline (à paraître).
[35] —-: Théorèmes de convergence pour les fonctions-spline générales d’interpolation et d’ajustement. C. R. Acad. Sei. Paris264, Ser. A, 126–128 (1967).
[36] Laurent, P. J.: Propriétés des fonctions-spline et meilleure approximation au sens de SARD. Cycle de conférences de la chaireJ. von Neumann, 1965/66, Université libre de Bruxelles.
[37] – Théorèmes de caractérisation en approximation convexe. Colloque sur la théorie de l’approximation des fonctions. Cluj (Roumanie) - 15–20 septembre 1967. Mathematica 30 (33), 1, 95–111 (1968).
[38] –: Représentation de données expérimentales à l’aide de fonctions-spline d’ajustement et évaluation optimale de fonctionnelles et évaluation optimale de fonctionnelles linéaires continues. Colloque: Problèmes fondamentaux de calcul numérique Prague, 11–15 septembre 1967. Aplikace Matematiky13, 154–162 (1968).
[39] Reinsch, Ch.: Smoothing by Spline Functions. Num. Math.10, 177–183 (1967). · Zbl 0161.36203 · doi:10.1007/BF02162161
[40] Sard, A.: Linear approximation. American Mathematical Society (1963). · Zbl 0115.05403
[41] Schoenberg, I. J.: Contributions to the problem of approximation of equidistant data by analytic functions. Part A. Quart. Appl. Math.4, 45–99 (1946). · Zbl 0061.28804
[42] —-, etU.A. Whitney: Sur la positivité des déterminants de translations des fonctions de fréquence de Polya avec une application au problème d’interpolation par les fonctions spline C. R. Acad. Sei. Paris228, 1996–1998 (1949). · Zbl 0036.03302
[43] —-: On Polya frequency functions. III. The positivity of translation determinants with on application to the interpolation problem by spline curves. Trans. Amer. Math. Soc.74, 246–259 (1953) · Zbl 0051.33606
[44] —-: Spline functions, convex curves, and mechanical quadrature. Bull. Amer. Math. Soc.64, 352–257 (1958). · Zbl 0085.33701 · doi:10.1090/S0002-9904-1958-10227-X
[45] – On interpolation by spline functions and its minimal properties. Proc. of the Conference on Approximation theory, Oberwolfach, Germany, August 1963.
[46] – Address given at SIAM, Conference on approximation. Gatlinburg, Tennessee, October 24 (1963).
[47] – On best approximation of linear operators. Kon. Nederlandse Akad, van Wetenschappen, Proceedings, Series A,67, 155–163 (1964). · Zbl 0146.08501
[48] —-: On trigonometric spline interpolation. J. of Math. and Mech.13, No. 5, 795–825 (Sept 1964). · Zbl 0147.32104
[49] —-: Spline interpolation and best quadrature formulae. Bull Amer. Math. Soc.70, No. 1, 143–148 (1964). · Zbl 0136.36202 · doi:10.1090/S0002-9904-1964-11054-5
[50] —-: Spline functions and the problem of graduation. Proc. Nat. Acad. Sci.52, 947–950 (1964). · Zbl 0147.32102 · doi:10.1073/pnas.52.4.947
[51] —-: Spline interpolation and the higher derivatives. Proc. of the Nat. Acad. Sci.51, No. 1, 24–28 (1964). · Zbl 0136.36201 · doi:10.1073/pnas.51.1.24
[52] –, andT. N. E. Greville: Smoothing by generalized spline-functions. SIAM National Meeting, N.Y., June 7-9, 1965 (Preprints).
[53] —-: On monosplines of least deviation and best quadrature formulae. J. SIAM. Anal.2, 144–170 (1965). · Zbl 0136.36203
[54] —-: On monosplines of least square deviation and best quadrature formulae II. J. SIAM, Num. Anal.3, No. 2, 321–328 (1966). · Zbl 0147.32103 · doi:10.1137/0703025
[55] Walsh, J. L., J. H. Ahlberg, andE. N. Nilson: Best approximation properties of the spline fit. J. Math. Mech.11, 225–234 (1962). · Zbl 0196.48603
[56] —- —- —-: Best approximation and convergence properties of higher-order spline fits. Amer. Math. Soc. Notices10, 202 (1963).
[57] Weinberger, H. F.: Optimal approximation for functions prescribed at equally spaced points. J. of res. of the N.B.S.65 B, No. 2, 99–104 (1961). · Zbl 0168.14901
[58] Yosida, K.: Functional analysis. Berlin-Heidelberg-New York: Springer 1965. · Zbl 0126.11504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.