zbMATH — the first resource for mathematics

Curves with high self-intersection on algebraic surfaces. (English) Zbl 0197.17505

Full Text: DOI Numdam EuDML
[1] W. L. Chow, On meromorphic maps of algebraic varieties,Annals of Math.,89 (1969), 391–403. · Zbl 0184.46501
[2] A. Grothendieck, Sur la classification des fibrés holomorphes sur la sphère de Riemann,Amer. J. Math.,79 (1957), 121–138. · Zbl 0079.17001
[3] (= EGA).A. Grothendieck, Éléments de géométrie algébrique,Publ. Math. I.H.E.S. (1960 ss.).
[4] (= SGA r).A. Grothendieck,Séminaire de géométrie algébrique de l’I.H.E.S. (1960–1961).
[5] (= AVB).R. Hartshorne, Ample vector bundles,Publ. Math. I.H.E.S.,29 (1966), 63–94. · Zbl 0173.49003
[6] R. Hartshorne, Cohomological dimension of algebraic varieties,Annals of Math.,88 (1968), 403–450. · Zbl 0169.23302
[7] H. Hironaka, On some formal imbeddings,Illinois J. Math.,12 (1968), 587–602. · Zbl 0169.52302
[8] H. Hironaka andH. Matsumura, Formal functions and formal embeddings,J. Math. Soc. Japan,20 (1968), 52–82. · Zbl 0157.27701
[9] T. Knapp, The minimal and relatively minimal models of the function field of a ruled surface,Thesis, Harvard (1960) (unpublished).
[10] D. Mumford,Enriques’ classification of surfaces in char. p, I, to appear. · Zbl 0188.53201
[11] M. Nagata, On rational surfaces, I,Mem. Coll. Sci. Kyoto, sér. A,32 (1960), 351–370. · Zbl 0100.16703
[12] M. Noether, Zur Theorie der eindeutigen Elementartransformationen,Math. Ann.,5 (1872), 635–639. · JFM 04.0419.01
[13] I. R. Šafarevič et al., Algebraic surfaces,Proc. Steklov Inst. Math.,75 (1965); trans. byAmer. Math. Soc. (1967).
[14] O. Zariski, Introduction to the problem of minimal models in the theory of algebraic surfaces,Publ. Math. Soc. of Japan,4 (1958). · Zbl 0093.33904
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.