×

zbMATH — the first resource for mathematics

The quasi topology associated with a countably subadditive set function. (English) Zbl 0197.19401

MSC:
54A05 Topological spaces and generalizations (closure spaces, etc.)
28A12 Contents, measures, outer measures, capacities
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] M. BRELOT, Eléments de la théorie classique du potentiel. Les cours de Sorbonne. C.D.U., Paris (4e édit. 1969).
[2] M. BRELOT, Introduction axiomatique de l’effilement, Annali di Mat. 57 (1962), 77-96. · Zbl 0119.08902
[3] M. BRELOT, Axiomatique des fonctions harmoniques. Séminaire de mathématiques supérieures, Montréal (1966). · Zbl 0148.10401
[4] M. BRELOT, Capacity and balayage for decreasing sets. Symposium on Statistics and Probability, Berkeley (1965). · Zbl 0314.60056
[5] M. BRELOT, Recherches axiomatiques sur un théorème de Choquet concernant l’effilement, Nagoya Math. Journal 30 (1967), 39-46. · Zbl 0156.12302
[6] M. BRELOT, On topologies and boundaries in potential theory. (Lectures in Bombay, 1966), Lecture Notes in Math., n° 175. Berlin (1970). · Zbl 0222.31014
[7] H. CARTAN, Théorie générale du balayage en potentiel newtonien, Ann. Univ. Grenoble 22 (1946), 221-280. · Zbl 0061.22701
[8] G. CHOQUET, Theory of capacities, Ann. Inst. Fourier 5 (1953), 131-295. · Zbl 0064.35101
[9] G. CHOQUET, Forme abstraite du théorème de capacitabilité, Ann. Inst. Fourier 9 (1959), 83-89. · Zbl 0093.29701
[10] G. CHOQUET, Sur LES points d’effilement d’un ensemble, Ann. Inst. Fourier 9 (1959), 91-101. · Zbl 0093.29702
[11] G. CHOQUET, Démonstration non probabiliste d’un théorème de getoor, Ann. Inst. Fourier 15, fasc. 2 (1965), 409-414. · Zbl 0141.30501
[12] J. L. DOOB, Applications to analysis of a topological definition of smallness of a set, Bull. Amer. Math. Soc. 72 (1966), 579-600. · Zbl 0142.09001
[13] B. FUGLEDE, Le théorème du minimax et la théorie fine du potentiel, Ann. Inst. Fourier 15, fasc. 1 (1965), 65-88. · Zbl 0128.33103
[14] B. FUGLEDE, Esquisse d’une théorie axiomatique de l’effilement et de la capacité, C.R. Acad. Sci. Paris 261, (1965), 3272-3274. · Zbl 0192.20401
[15] B. FUGLEDE, Quasi topology and fine topology. Sém. Brelot-Choquet-Deny : Théorie du potentiel, 10 (1965-1966), n° 12. · Zbl 0164.14002
[16] B. FUGLEDE, Applications du théorème minimax à l’étude de diverses capacités, C.R. Acad. Sci. Paris 266 (1968), 921-923. · Zbl 0159.40801
[17] B. FUGLEDE, Propriétés de connexion en topologie fine. Prépublication, Copenhague (1969).
[18] R.K. GETOOR, Additive functionals of a Markov process. (Lectures), Hamburg (1964). · Zbl 0212.20301
[19] C. GOFFMAN, C.J. NEUGEBAUER and T. NISHIURA, Density topology and approximate continuity, Duke Math. J. 28 (1961), 497-505. · Zbl 0101.15502
[20] J. RIDDER, Über approximativ stetigen funktionen, Fund. Math. 13 (1929), 201-209. · JFM 55.0145.01
[21] S. SAKS, Theory of the integral, Warsaw (1937). · Zbl 0017.30004
[22] A. IONESCU TULCEA and C. IONESCU TULCEA, Topics in the theory of lifting, Erg. Math. 48 (1969). · Zbl 0179.46303
[23] R.E. ZINK, On semicontinuous functions and Baire functions, Trans. Amer. Math. Soc. 117 (1965), 1-9. · Zbl 0143.27703
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.