zbMATH — the first resource for mathematics

A matrix structural theory of piecewise linear elastoplasticity with interacting yield planes. (English) Zbl 0197.23303

Full Text: DOI
[1] P. Cicala,Le relazioni fra tensioni e deformazioni in elastoplasticità, ”Mem. Acc. Sc.”, Torino, 1960.
[2] P. M. Naghdi,Stress-strain relations in plasticty and thermo-plasticity, in ”Plasticity”, Pergamon Press, 1960.
[3] W. Prager,Models of plastic behavior, ”Proc. V, U.S. Nat. Congr. Appl. Mech.”, ASME, New York, 1966.
[4] Z. Mróz,Non tinear flow-laws in the theory of plasticity, ”Bull. Acad. Polon. Sci.”, V. XII, N. 11, 1964.
[5] J. Mandel,Contribution théorique a l’étude de l’écrouissage et des lois de l’écoulement plastique, ”Appl. Mech.; Proc. of the 11th Int. Congr. of Appl. Mech.”, Munich, 1964.
[6] J. Mandel,Généralization de la théorie de plasticité de W. T. Koiter, ”Int. J. Solids Structures”, N. 4, 1965.
[7] G. Maier,”Linear” flow-laws of elastoplasticity: a unified general approach ”Rend. Acc. Naz. Lincei”, 142A, 1969. · Zbl 0206.54302
[8] Z. Mróz,On the description of anisotropic workhardening, ”J. Mech. Phys. Solids”, 15, N. 3, 1967.
[9] I. Berman andP. G. Hodge,A general theory of piecewise linear plasticity for initially anisotropic materials, ”Arch. Mechan. Stosow.”, XI, 5, 1959. · Zbl 0125.41603
[10] G. Maier,Teoremi di minimo in termini finiti con leggi costitutive linearizzate a tratti, ”Rendic. Ist. Lomb. Sci. Lett.”, V. 103, 1969. · Zbl 0213.28002
[11] B. G. Neal,Plastic collapse and shakedown theorems for structures of strainhardening materials, ”J. Aero. Sci.”, 17, N. 5. 1950.
[12] B. G. Neal,The plastic methods of structural analysis, Chapman & Hall Ltd., London, 1963.
[13] G. Ceradini,Sull’adattamento dei corpi elasto-plastici soggetti ad azioni dinamiche, ”Giorn. Genio Civile”, may, 1969.
[14] G. Maier,Shakedown theory in perfect elastoplasticity with associated flow-laws: a finite element, linear programming approach, ”Meccanica”, N. 3, 1969. · Zbl 0219.73039
[15] G. Macchi,Limit-states design of statically indeterminate structures composed of linear membres, ”Studi e Rend. Corso Perfez. Costr. Cem. Arm.”, Politecnico di Milano, 1969.
[16] P. D. Arthur andV. Ramakrishnan,Ultimate strength design for structural concrete, I. Pitman & Sons Ltd., London, 1969.
[17] J. H. Argyris,Continua and discontinua, in ”Matrix methods in struct. mech.” Proc. Conf. Wright-Patterson AFB, Ohio, 1967.
[18] J. S. Przemieniecki,Theory of matrix structural analysis, McGraw-Hill Comp., New York, 1967. · Zbl 1246.76002
[19] G. Maier,A quadratic programming approach for certain nonlinear structural problems, ”Meccanica”, N. 2, 1968. · Zbl 0165.28502
[20] G. B. Dantzig andA. F. Veinott Ed.,Mathematics of the decision sciences, Part I, Am. Math. Soc., Providence, 1968. · Zbl 0179.30702
[21] R. W. Cottle,Note on a fundamental theorem in quadratic programming. ”J. Soc. Industr. Appl. Math.”, 12, 1964. · Zbl 0128.39701
[22] B. Paul, W. Chen andL. Lee,An experimental study of plastic flow under stepwise increments of tension and torsion, ”Proc. 4th U. S. Nat. Congr. Appl. Mech.”, ASME, New York, 2, 1962.
[23] D. R. Jenkins,Kinematic hardening in zincalloy tubes, ”J. Appl. Mech.” 32, 1965.
[24] J. Parker andM. B. Bassett,Plastic stress-strain relationship: some experiments to derive a subsequent yield surface. ”J. Appl. Mech.”, 31, 1964.
[25] G. Maier,Incremental plastic analysis in the presence of large displacements and physical instabilizing effects, ”Techn. Report, Ist. Sc. Tecn. Costr., Politecnico, Milano, Dec., 1969. · Zbl 0224.73043
[26] H. P. Künzi andW. Krelle,Nonlinear programming, Blaisdell Publ. Comp, Waltham, 1966.
[27] K. Ritter,A method for solving maximum problems with a nonconcave quadratic objective function, ”Z. Wahrscheinlischkeitstheoric verw. Geb.” 4, 1966. · Zbl 0139.13105
[28] M. Capurso andG. Maier,Incremental elastoplastic analysis and quadratic optimization, ”Meccanica”, N. 2, 1970. · Zbl 0198.58301
[29] W. T. Koiter,General theorems for elastic-plastic solids ”Progr. in Solid Mech.”, North-Holland, Amsterdam, 1960. · Zbl 0109.43002
[30] G. Gavarini,sull rientro in fase elastica delle vibrazioni forzate elasto-plastiche, ”Giorn. Genio Civile”, may, 1969.
[31] P. Wolfe,The simplex method for quadratic programming, ”Econometrica”, 27, 1959. · Zbl 0103.37603
[32] K. Kirchgässner,Ein Verfabren zur Maximierung linearer Funktionen in nichtkonvexen Bereichen, ”Z. angew. Math. Mech.”, 42, T, 1962. · Zbl 0108.33301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.