zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Independence of local algebras in quantum field theory. (English) Zbl 0197.26303

Full Text: DOI
[1] Haag, R., Kastler, D.: J. Math. Phys.5, 848 (1964). · Zbl 0139.46003 · doi:10.1063/1.1704187
[2] Schlieder, S.: Commun. Math. Phys.13, 216 (1969). · Zbl 0179.58001 · doi:10.1007/BF01645488
[3] Rickart, Charles E.: General theory of Banach algebras. Princeton: Van Nostrand 1960. · Zbl 0095.09702
[4] Dixmier, Jaques: Les C*-algèbres et leurs représentations. Paris: Gauthier-Villars 1964.
[5] The original version of the proof of lemma 1 needed the assumption that there exists a representation {$\pi$} of $\mathfrak{A}$ 12 with {$\pi$}( $\mathfrak{A}$ 1)” and {$\pi$}( $\mathfrak{A}$ 2)” fulfilling the proposition of Schlieder. The idea of the proof given in this paper is due to Borchers.
[6] Turumaru, T.: Tôhoku Math. J.8, 281 (1956). · Zbl 0072.32903 · doi:10.2748/tmj/1178244952
[7] ---- Tôhoku Math. J.16, 111 (1964). · Zbl 0127.07302 · doi:10.2748/tmj/1178243737
[8] Wulfsohn, A.: Bull. Sci. Math.87, 13 (1963).
[9] Okayasu, T.: Tôhoku Math. J.18, 325 (1966). · Zbl 0152.33101 · doi:10.2748/tmj/1178243423