Independence of local algebras in quantum field theory. (English) Zbl 0197.26303


quantum theory
Full Text: DOI


[1] Haag, R., Kastler, D.: J. Math. Phys.5, 848 (1964). · Zbl 0139.46003 · doi:10.1063/1.1704187
[2] Schlieder, S.: Commun. Math. Phys.13, 216 (1969). · Zbl 0179.58001 · doi:10.1007/BF01645488
[3] Rickart, Charles E.: General theory of Banach algebras. Princeton: Van Nostrand 1960. · Zbl 0095.09702
[4] Dixmier, Jaques: Les C*-algèbres et leurs représentations. Paris: Gauthier-Villars 1964.
[5] The original version of the proof of lemma 1 needed the assumption that there exists a representation {\(\pi\)} of \(\mathfrak{A}\) 12 with {\(\pi\)}( \(\mathfrak{A}\) 1)” and {\(\pi\)}( \(\mathfrak{A}\) 2)” fulfilling the proposition of Schlieder. The idea of the proof given in this paper is due to Borchers.
[6] Turumaru, T.: Tôhoku Math. J.8, 281 (1956). · Zbl 0072.32903 · doi:10.2748/tmj/1178244952
[7] —- Tôhoku Math. J.16, 111 (1964). · Zbl 0127.07302 · doi:10.2748/tmj/1178243737
[8] Wulfsohn, A.: Bull. Sci. Math.87, 13 (1963).
[9] Okayasu, T.: Tôhoku Math. J.18, 325 (1966). · Zbl 0152.33101 · doi:10.2748/tmj/1178243423
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.