Ciarlet, P. G. Discrete maximum principle for finite-difference operators. (English) Zbl 0198.14601 Aequationes Math. 4, 338-352 (1970). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 136 Documents Keywords:partial differential equations PDFBibTeX XMLCite \textit{P. G. Ciarlet}, Aequationes Math. 4, 338--352 (1970; Zbl 0198.14601) Full Text: DOI EuDML References: [1] Bramble, J. H.,Error Estimates for Difference Methods in Forced Vibration Problems, SIAM J. Numer. Anal.3, 1–12 (1966). · Zbl 0146.13804 · doi:10.1137/0703001 [2] Bramble, J. H., andHubbard, B. E.,On the Formulation of Finite Difference Analogues of the Dirichlet Problem for Poisson’s Equation, Numer. Math.4, 313–327 (1962). · Zbl 0135.18102 · doi:10.1007/BF01386325 [3] Bramble, J. H., andHubbard, B. E.,A Priori Bounds on the Discretization Error in the Numerical Solution of the Dirichlet Problem, Contributions to Differential Equations, Vol. II (John Wiley & Sons, Inc., New York, 1963), pp. 229–252. [4] Bramble, J. H. andHubbard, B. E.,A Theorem on Error Estimation for Finite Difference Analogues of the Dirichlet Problem for Elliptic Equations, Contributions to Differential Equations, Vol. II (John Wiley & Sons, Inc., New York 1963), pp. 319–340. [5] Bramble, J. H. andHubbard, B. E.,On a Finite Difference Analogue of an Elliptic Boundary Problem which is Neither Diagonally Dominant Nor of Non-Negative Type, J. Math. and Phys.43, 117–132 (1964). · Zbl 0126.32305 [6] Bramble, J. H. andHubbard, B. E.,New Monotone Type Approximations for Elliptic Problems, Math. Comp.18, 349–367 (1964). · Zbl 0124.33006 · doi:10.1090/S0025-5718-1964-0165702-X [7] Bramble, J. H. andHubbard, B. E.,A Finite Difference Analog of the Neumann Problem for Poisson’s Equation, SIAM J. Numer. Anal.2, 1–14 (1965). · Zbl 0141.33201 [8] Bramble, J. H. andHubbard, B. E.,Approximations of Solutions of Mixed Boundary Value Problems for Poisson’s Equation by Finite Differences, J. Assoc. Comput. Mach.12, 114–123 (1965). · Zbl 0125.07305 [9] Bramble, J. H., Hubbard, B. E. andZlamal, M.,Discrete Analogues of the Dirichlet Problem with Isolated Singularities, SIAM J. Numer. Anal.5, 1–25 (1968). · Zbl 0176.46902 · doi:10.1137/0705001 [10] Collatz, L.,The Numerical Treatment of Differential Equations, 3rd. ed. (Springer-Verlag, New York 1966). · Zbl 0173.17702 [11] Courant, R., andHilbert, D.,Methods of Mathematical Physics, Vol. II (Interscience Publishers, New York 1962) · Zbl 0099.29504 [12] Forsythe, G. E. andWasow, W. R.,Finite-Difference Methods for Partial Differential Equations (John Wiley & Sons, Inc., New York 1960). [13] Hubbard, B. E.,Remarks on the Order of Convergence in the Discrete Dirichlet Problem, Numerical Solution of Partial Differential Equations (Academic Press, New York 1966), pp. 21–34. [14] Kellog, R. B.,Difference Equations on a Mesh Arising from a General Triangulation, Math. Comp.18, 203–210 (1964). · Zbl 0119.12403 · doi:10.1090/S0025-5718-1964-0177517-7 [15] Kellog, R. B.,An Error Estimate for Elliptic Difference Equations on a Convex Polygon, SIAM J. Numer. Anal.3, 79–90 (1966). · Zbl 0143.17602 · doi:10.1137/0703006 [16] Mcallister, G. T.,Quasilinear Uniformly Elliptic Partial Differential Equations and Difference Equations, SIAM J. Numer. Anal.3, 13–33 (1966). · Zbl 0151.21501 · doi:10.1137/0703002 [17] Mac Neal, R. H.,An Asymmetrical Finite Difference Network, Quart. Appl. Math.11, 295–310 (1953). · Zbl 0053.26304 [18] Price, H. S.,Monotone and Oscillation Matrices Applied to Finite Difference Approximations, Math. Comp.22, 489–516 (1968). · Zbl 0162.47204 · doi:10.1090/S0025-5718-1968-0232550-5 [19] Varga, R. S.,Matrix Iterative Analysis (Prentice-Hall, Inc., Englewood Cliffs, N.J. 1962). · Zbl 0133.08602 [20] Varga, R. S.,On a Discrete Maximum Principle, SIAM J. Numer. Anal.3, 355–359 (1966). · Zbl 0143.17603 · doi:10.1137/0703029 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.