×

zbMATH — the first resource for mathematics

Integral representations for Markov transition probabilities. (English) Zbl 0198.22801

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Mark Kac, Random walk and the theory of Brownian motion, Amer. Math. Monthly 54 (1947), 369 – 391. · Zbl 0031.22604
[2] Samuel Karlin and James McGregor, Representation of a class of stochastic processes, Proc. Nat. Acad. Sci. U. S. A. 41 (1955), 387 – 391. · Zbl 0067.10803
[3] David G. Kendall, Unitary dilations of Markov transition operators, and the corresponding integral representations for transition-probability matrices, Probability and statistics: The Harald Cramér volume (edited by Ulf Grenander), Almqvist & Wiksell, Stockholm; John Wiley & Sons, New York, 1959, pp. 139 – 161. · Zbl 0117.35801
[4] David G. Kendall, Unitary dilations of one-parameter semigroups of Markov transition operators, and the corresponding integral representations for Markov processes with a countable infinity of states, Proc. London Math. Soc. (3) 9 (1959), 417 – 431. · Zbl 0117.35802
[5] D. G. Kendall, Geometric ergodicity in the theory of queues, to appear. · Zbl 0107.35306
[6] A. Kolmogoroff, Zur Theorie der Markoffschen Ketten, Math. Ann. 112 (1936), no. 1, 155 – 160 (German). · JFM 61.0563.03
[7] W. Ledermann and G. E. H. Reuter, Spectral theory for the differential equations of simple birth and death processes, Philos. Trans. Roy. Soc. London. Ser. A. 246 (1954), 321 – 369. · Zbl 0059.11704
[8] Edgar Reich, Waiting times when queues are in tandem, Ann. Math. Statist. 28 (1957), 768 – 773. · Zbl 0085.34705
[9] B. Sz.-Nagy, Prolongements des transformations de l’espace de Hilbert qui sortent de cet espace, Appendix, 1955, to F. Riesz and B. Sz.-Nagy, Leçons d’analyse fonctionnelle, Budapest, 1952.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.