Neumann, Bernhard H. Some remarks on cancellative semigroups. (English) Zbl 0198.34101 Math. Z. 117, 97-111 (1970). Summary: Reviewer: Bernhard H. Neumann (Canberra) Cited in 5 Documents MSC: 20M99 Semigroups Keywords:generalized groups, semigroups × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] Clifford, A. H., Preston, G. B.: The algebraic theory of semigroups, volumes I, II (Mathematical Surveys No. 7). Amer. Math. Soc., Providence, R.I., 1961, 1967. · Zbl 0111.03403 [2] Eklof, P., Sabbagh, G.: Model-completions and modules. To be published. · Zbl 0227.02029 [3] Howie, J. M.: An embedding theorem with amalgamation for cancellative semigroups. Proc. Glasgow Math. Assoc.6, 19-26 (1963). · Zbl 0113.25201 · doi:10.1017/S204061850003464X [4] Neumann, B. H.: A note on algebraically closed groups. J. London Math. Soc.27, 247-249 (1952). · Zbl 0046.24802 · doi:10.1112/jlms/s1-27.2.247 [5] ? An essay on free products of groups with amalgamations. Philos. Trans. Roy. Soc. London (A)246, 503-554 (1954). · Zbl 0057.01702 · doi:10.1098/rsta.1954.0007 [6] ? Permutational products of groups. J. Austral. Math. Soc.1, 299-310 (1959-60). · Zbl 0095.01701 · doi:10.1017/S1446788700025970 [7] ? Algebraically closed semigroups. Studies in Pure Mathematics. New York-London: Academic Press 1971. [8] ? The isomorphism problem for algebraically closed groups. Proc. Conf. Decision Problems in Group Theory, Irvine, Calif., September 1969. Amsterdam: North Holland Publ. Co. 1971. [9] Robinson, A.: Note on an embedding theorem for algebraic systems. J. London Math. Soc.30, 249-252 (1955). · Zbl 0064.00802 · doi:10.1112/jlms/s1-30.2.249 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.