×

zbMATH — the first resource for mathematics

Imbedding theorems for general Sobolev weight spaces. (English) Zbl 0198.46205

PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] J. Ne : Sur une méthode pour résoudre les equations aux dérivées partielles du type elliptique, voisine de la variationnelle . Ann. Scuola Norm. Sup. Pisa , ser. 3 , 16 , 4 ( 1962 ), 305 - 326 . Numdam | MR 163054 | Zbl 0112.33101 · Zbl 0112.33101
[2] J. Kadlec , A. Kufner : Characterization of functions with zero traces by integrals with weight functions I . Časopis pest. mat. 91 ( 1966 ), 463 - 471 . MR 212559 | Zbl 0168.11102 · Zbl 0168.11102
[3] J. Kadlec , A. Kufner : Characterization of functions with zero traces by integrals with weight functions II . Časopis pest. mat. 92 ( 1967 ), 16 - 28 . MR 215081 | Zbl 0174.44003 · Zbl 0174.44003
[4] A. Kufner : Einige Eigenschaften der Sobolevachen Räume mit Belegungsfunktionen . Czechoslovak Math. J. 15 ( 90 ) ( 1965 ), 597 - 620 . Article | MR 193500 | Zbl 0148.37303 · Zbl 0148.37303
[5] L.D. Kudrjavcev : Direct and inverse imbedding theorems. Applications to the solution of elliptic equations by variational methods . Trudy Mat. Inst. Steklov. 55 ( 1959 ). (Russian). MR 199695 | Zbl 0283.46019 · Zbl 0283.46019
[6] [6J G.N. Jakovlev : Density of finitary functions in weight spaces . Dokl. Akad. Nauk SSSR , 170 ( 1966 ), 797 - 798 . (Russian) MR 206471 | Zbl 0157.44201 · Zbl 0157.44201
[7] G.H. Hardy , J.E. Littlewood , G. Pólva : Inequalities . Cambridge 1934 . Zbl 0010.10703 | JFM 60.0169.01 · Zbl 0010.10703
[8] A. Zygmund : Trigonometric series . Vol. I . Cambridge 1959 . Zbl 0085.05601 · Zbl 0085.05601
[9] O.V. Besov , A. Kufner : On denaity of smooth functions in weight spaces . Czechoslovak Math. J. 18 ( 93 ) ( 1968 ), 178 - 188 (Russian). Article | MR 223877 | Zbl 0193.41502 · Zbl 0193.41502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.