×

Vector lattice measures on locally compact spaces. (English) Zbl 0198.47803


MSC:

46G10 Vector-valued measures and integration
28B15 Set functions, measures and integrals with values in ordered spaces
46A40 Ordered topological linear spaces, vector lattices

References:

[1] Floyd, E.E.: Boolean algebras with pathological order properties. Pacific J. Math.5, 687-689 (1956). · Zbl 0065.26603
[2] Freudenthal, H.: Teilweise geordnete Moduln. Proc. Acad. Amsterdam39, 641-651 (1936). · Zbl 0014.31302
[3] Halmos, P.R.: Measure theory. Princeton: Van Nostrand 1950. · Zbl 0040.16802
[4] Kadison, R.V.: A representation theory for commutative topological algebra. Mem. Amer. Math. Soc.7, 1-39 (1951). · Zbl 0042.34801
[5] McShane, E.J.: Order-preserving maps and integration processes. Annals Math. Studies 31. Princeton: Princeton University Press 1953. · Zbl 0051.29301
[6] Sobolev, V.I.: On partially ordered measure of sets, measurable functions and certain abstract integrals. Doklady Akad. Nauk SSSR (N.S.)91, 23-26 (1953) (Russian).
[7] Vulikh, B.Z.: Introduction to the theory of partially ordered spaces. Groningen: Wolters-Noordhoof 1967.
[8] Wright, J.D. Maitland: Stone algebra valued measures and integrals. Proc. London Math. Soc. (3)19, 107-122 (1969). · Zbl 0186.46504 · doi:10.1112/plms/s3-19.1.107
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.