Incremental elastoplastic analysis and quadratic optimization. (English) Zbl 0198.58301

Full Text: DOI


[1] W. T. Koiter,General theorems of elastic-plastic solids, Progr. in Solid Mech., North-Holland, Amsterdam, 1960. · Zbl 0109.43002
[2] D. C. Drucker,Variational principles in the mathematical theory of plasticity, Proc. 1956 Symp. in Appl. Math., vol. 8, Mc-Graw Hill, 1958. · Zbl 0098.15903
[3] P. G. Hodge,Numerical applications of minimum principles in plasticity, Engineering Plasticity, Cambridge Un. Press, 1968.; · Zbl 0236.73067
[4] G. Ceradini,A maximum principle for the analysis of elastic-plastic systems, Meccanica, no. 4, 1966. · Zbl 0161.21902
[5] G. Maier,Some theorems for plastic strain rates and plastic strains, Journ. de Méc., no. 1, 1969. · Zbl 0176.25901
[6] G. Maier,Quadratic programming and theory of elastic perfectly plastic structures, Meccanica, no. 4, 1968. · Zbl 0181.53704
[7] M. Capurso,Principi di minimo per la soluzione incrementale dei problemi elasto-plastici, Nota I–II, Rend. Acc. Naz. Lincei, April–May 1969. · Zbl 0187.48003
[8] G. Maier,Teoremi di minimo in termini finiti per continui elasto-plastici con leggi costitutive linearizzate a tratti, Rend. Ist. Lomb. Sc. e Lett., Cl. A, 1969. · Zbl 0213.28002
[9] O. C. Zienkiewicz,The finite element method in structural and continuum mechanics, Mc Graw-Hill, London, 1967. · Zbl 0189.24902
[10] J. S. Przemieniecki,Theory of matrix structural analysis, Mac Graw-Hill, London, 1968. · Zbl 0177.53201
[11] J. C. G. Boot,Quadratic programming, North-Holland, Amsterdam, 1964. · Zbl 0138.15802
[12] L. Collatz andW. Wetterling,Optimierungsaufgaben, Springer, Berlin, 1966.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.