Voráček, Jan Über einige nichtlineare Differentialgleichungen dritter Ordnung. (Czech. German summary) Zbl 0199.14103 Acta Univ. Palacki. Olomuc., Fac. Rer. Nat. 21, 109-127 (1966). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 Documents MSC: 34A34 Nonlinear ordinary differential equations and systems 34C11 Growth and boundedness of solutions to ordinary differential equations 34E99 Asymptotic theory for ordinary differential equations 34D05 Asymptotic properties of solutions to ordinary differential equations Keywords:ordinary differential equations PDF BibTeX XML Cite \textit{J. Voráček}, Acta Univ. Palacki. Olomuc., Fac. Rer. Nat. 21, 109--127 (1966; Zbl 0199.14103) OpenURL References: [1] Ezeilo J. O. C.: A note on a boundedness theorem for some third order differential equation. Journal of the London math. Society 31, 1961. · Zbl 0104.06501 [2] Ezeilo J. O. C.: A stability result for the solutions of certain third order differential equation. Journal of the London math. Society 37, 1962. · Zbl 0113.07604 [3] Ezeilo J. O. C.: On the boundedness of solutions of a certain differential equations of the third order. Journal of the London math. Soc. (3) 9, 1959. · Zbl 0092.30502 [4] Opial Z.: Sur les solutions de ľéquation différentielle x” + h(x) x’ + f(x) = e(t). Ann. Polon. Math. VIII. 1960. · Zbl 0089.07002 [5] Kamke E.: Differentialgleichungen reeler Funktionen. Leipzig 1956. [6] Contributions to nonlinear oscillations. (M. L. Cartwright), Princeton 1960. [7] Ezeilo J. O. C.: On the existence of periodic solutions of a certain third order differential equation. Proc. of the Cambridge phil. Soc. (Math. - Phys. sc), 56, 1960. · Zbl 0097.29404 [8] La Salle, Lefschetz: Stability by Ljapunov’s direct Method. Academic Press, 1961. · Zbl 0098.06102 [9] Voráček J.: Einige Bemerkungen über eine nichtlineare Differentialgleichung dritter Ordnung. Tagungsbericht aus der III. Konferenz über nichtlineare Schwingungen, Nachrichten der DAW, Berlin 1965. · Zbl 0178.43401 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.