×

Propagation of zeroes and uniqueness in the Cauchy problem for first order partial differential equations. (English) Zbl 0199.15903


Full Text: DOI

References:

[1] Hörmander, L., Linear Partial Differential Operators. New York: Academic Press 1963. · Zbl 0108.09301
[2] Malgrange, B., Sur les ouverts convexes par rapport à un opérateur différentiel. C.R. Acad. Sci. Paris 254, 614–615 (1962). · Zbl 0117.06301
[3] Treves, F., Linear Partial Differential Equations with Constant Coefficients. New York: Gordon and Breach 1966. · Zbl 0129.06905
[4] Zachmanoglou, E. C., Uniqueness of the Cauchy problem when the initial surface contains characteristic points. Arch. Rational Mech. Anal. 23, 317–326 (1966). · Zbl 0154.35301 · doi:10.1007/BF00281166
[5] Zachmanoglou, E. C., Nonuniqueness of the Cauchy problem for linear partial differential equations with variable coefficients. Arch. Rational Mech. Anal. 27, 373–384 (1968). · Zbl 0159.38502 · doi:10.1007/BF00251440
[6] Zachmanoglou, E. C., Uniqueness of the Cauchy problem for linear partial differential equations. Transactions of the AMS 136, 517–526 (1969). · Zbl 0174.41401 · doi:10.1090/S0002-9947-1969-0239263-1
[7] Zachmanoglou, E. C., An application of Holmgren’s theorem and convexity with respect to differential operators with flat characteristic cones. Transactions of the AMS 140, 109–115 (1969). · Zbl 0179.19304
[8] Nagano, T., Linear differential systems with singularities and an application to transitive Lie algebras. Journal of Math. Soc. of Japan 18, 398–404 (1966). · Zbl 0147.23502 · doi:10.2969/jmsj/01840398
[9] Bony, Jean-Michel, Principe du maximum et inégalité de Harnack pour les opérateurs elliptiques dégénérés. Seminaire Brelot-Choquet-Deny (Theorie du potentiel), 12e année, 1967/1968, no. 10.
[10] Coddington, E. A., & N. Levinson, Theory of Ordinary Differential Equations. New York: McGraw Hill Book Company Inc. 1955. · Zbl 0064.33002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.